首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aluminum hydroxide, magnesium hydroxide, and 1,2‐bis(pentabromophenyl) ethane were incorporated into high‐density polyethylene (HDPE) and wood flour composites, and their mechanical properties, morphology, and fire‐retardancy performance were characterized. The addition of flame retardants slightly reduced the modulus of elasticity and modulus of rupture of composites. Morphology characterization showed reduced interfacial adhesion among wood flour, HDPE, and flame retardants in the composites compared with control composites (HDPE and wood flour composites without the addition of flame retardants). The flame retardancy of composites was improved with the addition of the flame retardants, magnesium hydroxide and 1,2‐bis(pentabromophenyl) ethane, especially 1,2‐bis(pentabromophenyl) ethane, with a significant decrease in the heat release rate and total heat release. Char residue composition and morphology, analyzed by attenuated total reflectance, Fourier‐transform infrared spectroscopy, and scanning electron microscopy, showed that the char layer was formed on the composite surface with the addition of flame retardants, which promoted the fire performance of composites. The composites with 10 wt% 1,2‐bis(pentabromophenyl) ethane had good fire performance with a continuous and compact char layer on the composite surface. J. VINYL ADDIT. TECHNOL., 24:3–12, 2018. © 2015 Society of Plastics Engineers  相似文献   

2.
The synthesis of new amphiphilic oligoesters containing a hydrophobic block based on p‐alkoxycinnamate and hydrophilic poly(ethylene oxide) is reported. Two hydrophobic monomers, 1,2‐(bis(4‐(2‐carboxyvinyl)phenoxy))ethane ( M2 ) and 1,12‐(bis(4‐(2‐carboxyvinyl) phenoxy))dodecane ( M12 ), were synthesized. Four oligoesters, poly((1,2‐(bis(4‐(2‐carboxyvinyl)phenoxy))ethane) ‐co‐(poly(ethylene oxide)200)) ( P2‐200 ), poly((1,2‐(bis(4‐(2‐carboxyvinyl)phenoxy))ethane)‐co‐(poly(ethylene oxide) 400)) ( P2‐400 ), poly((1,12‐(bis(4‐(2‐carboxyvinyl)phenoxy)) dodecane)‐co‐(poly(ethylene oxide)400)) ( P12‐400 ), and poly((1,12‐(bis(4‐(2‐carboxyvinyl)phenoxy))dodecane)‐co‐ (poly(ethylene oxide)1000)) ( P12‐1000 ) were then constructed by reacting the M2 or M12 with poly(ethylene oxide) (PEO) with lengths of ~ 4 (PEO 200), ~ 10 (PEO 400), or ~ 23 (PEO1000) units using multiple esterifications. These oligoesters possess UVB absorption properties and show good solubility in various organic solvents. Self‐assembly of the oligoesters into aqueous spherical colloids could be induced through an acetone to water solvent displacement technique. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
A series of pH‐responsive hydrogels were studied as potential drug carriers for the protection of insulin from the acidic environment of the stomach before releasing in the small intestine. Hydrogels based on poly(vinyl alcohol) networks grafted with acrylic acid or methacrylic acid were prepared by a two‐step process. Poly(vinyl alcohol) hydrogels were prepared by gamma ray irradiation (50 kGy) and then followed by grafting either acrylic acid or methacrylic acid onto these poly(vinyl alcohol) hydrogels with subsequent irradiation (5–20 kGy). These graft hydrogels showed pH‐sensitive swelling behavior and were used as carriers for the controlled release of insulin. The in vitro release of insulin was observed for the insulin‐loaded hydrogels in a simulated intestinal fluid (pH 6.8) but not in a simulated gastric fluid (pH 1.2). The release behavior of insulin in vivo in a rat model confirmed the effectiveness of the oral delivery of insulin to control the level of glucose. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 636–643, 2004  相似文献   

4.
Poly(1‐methyl‐1,4‐butanediol‐1,4‐diyl/2,3,4‐trihydro‐5‐methylfuran‐2,5‐diyl) was prepared by epoxidation of deproteinized natural rubber with m‐chloroperbenzoic acid followed by hydrolysis with sulfuric acid. Characterization of the resulting product was performed through FT‐IR, 1H NMR, and 13C NMR spectroscopies. All signals appearing in the 1H and 13C NMR spectra were assigned by distortionless enhancement by polarization transfer (DEPT), quaternary carbon observation (QUAT), correlation spectroscopy (COSY), and heteronuclear multiple quantum correlation (HMQC) measurements. After proving the primary structure of the product, one pot synthesis of poly(1‐methyl‐1,4‐butanediol‐1,4‐diyl/2,3,4‐trihydro‐5‐methylfuran‐2,5‐diyl) from deproteinized natural rubber latex was carried out with peracetic acid and 2‐propanol. The resulting product was characterized by 1H NMR spectroscopy on the basis of the assignments established in this study, and its gas permeability was measured for a practical application as a film. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

5.
A blue‐light‐emissive fluorene‐based polyoxadiazole, an n‐type polyfluorene derivative, was synthesized by both one‐step and two‐step methods. Directly polymerized poly[(9,9′‐didodecylfluorene‐2,7‐diyl)‐alt‐(1,3,4‐oxadiazole‐2,5‐diyl)] (PFOx‐DP) exhibited a higher molecular weight and a more efficient photoluminescence quantum yield than poly[(9,9′‐didodecylfluorene‐2,7‐diyl)‐alt‐(1,3,4‐oxadiazole‐2,5‐diyl)] (PFOx) prepared via a polyhydrazide precursor, poly[9,9′‐didodecylfluorene‐2,7‐(2,5‐dihydrazide‐ 1,3,4‐oxadiazole). Both polymers, differently prepared, showed similar photoluminescent properties in 1,2‐dichloroethane. However, in a film state, the influence of the interchain interactions on the photoluminescence of PFOx with the lower molecular weight was larger than on the photoluminescence of PFOx‐DP. The electron‐deficient property of an oxadiazole group in the polymer backbone resulted in low‐lying highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of ?6.29 and ?3.26eV, respectively, of the polymer suitable for electron‐transport/hole‐blocking layers and emissive layers in multilayer electroluminescence devices. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3112–3118, 2004  相似文献   

6.
Fluorinated polyurethane–acrylate (FPUA) hybrid emulsion was prepared by copolymerization of polyurethane, methyl methacrylate, and 1H,1H,2H,2H‐heptadecafluorooctyl acrylate (FA) via emulsion polymerization in the presence of a perfluoronated reactive surfactant. The polyurethane was synthesized from isophorone diisocyanate, poly(propylene glycol)‐1000, dimethylolpropionic acid, 1,4‐butanediol, and 2‐hydroxyethyl methylacrylate. The influence of the monomer on the surface properties, wetting behaviors, particle size, and viscosity of the emulsion was investigated. The mechanical properties of FPUA latex films were improved, and water absorption and contact angle were improved with the addition of methyl methacrylate and FA. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43357.  相似文献   

7.
Morphology control is an important issue for boosting the performance of organic bulk‐heterojunction (BHJ) solar cells. In this study, we investigated the correlation between alcohol solvents and the morphologies of poly({4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′] dithiophene‐2,6‐diyl}{3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl}) (PTB7) and [6,6]‐phenyl‐C70‐butyric acid methyl ester (PC70BM)‐based organic solar cells by spin‐casting the alcohol onto the active layers. We found that the morphologies strongly depended on the structure of the alcohol [alkyl chain length and hydroxyl (? OH) group position]. Ethanol or 2‐propanol showed the highest performance among the alcohols considered here. Atomic force microscopy images and absorption spectra demonstrated that the alcohols affected the morphologies of PC70BM rather than those of PTB7. The morphologies of PC70BM were dependent on the solubilities of the alcohols to the active layers and the hydrogen‐bonding strengths between the PC70BM and alcohol molecules. Our results indicate that the use of alcohols for solvent annealing is a simple and efficient method for developing high‐performance organic BHJ solar cells. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 44367.  相似文献   

8.
A facile synthesis concept focusing on the poly(vinyl alcohol) (PVA) concentration induced interfacial energy effects in seed swelling polymerization was realized for the successful fabrication of a series of monodispersed poly(methyl methacrylate) (PMMA) microparticles with four crosslinking agents, 2,2‐bis[(methacryloyloxy)methyl]butyl methacrylate, 1,2‐ethanediyl bis(2‐methylacrylate), 1,3‐divinylbenzene and 1,2‐ethanediyl diacetate. We revealed a special role of PVA in regulating the diffusion of crosslinking agents as well as the swelling degree of latex seeds and, more noticeably, the consequent improved mechanical properties of the crosslinked PMMA microparticles formed. The highest recovery rate obtained from the PMMA microparticles with 0.6 wt% PVA approached 67%, which is higher than or comparable to reported values. This work not only developed a new facile synthesis approach for producing highly uniform tough crosslinked PMMA microparticles for more potential applications but also provided valuable insights into fundamental aspects of seed swelling polymerization. © 2019 Society of Chemical Industry  相似文献   

9.
A dual‐responsive double‐walled polymeric hollow sphere (PHS) serving as a candidate for synergetic drug delivery platform is prepared by a simple and green template polymerization in aqueous medium. The PHS, comprised of thermo‐responsive crosslinked poly(N‐isopropylacrylamide) (PNIPAM) as the inner shell and pH‐responsive crosslinked poly(methacrylic acid) (PMAAc) as the outer shell, is assembled through self‐removal of the thermo‐responsive template from a core‐triple shell structure by free radical polymerization with sequential addition of reactants. The discrete double‐shell structure renders the PHS independent temperature and pH‐controlled swelling/shrinking capability. Taking the advantage of two compartmentalized internal spaces (the core and the interlayer spaces) with independent temperature‐ and pH‐dependent behaviors, two model drugs representing the small molecule and the macromolecule are loaded in selective locations of the PHS. Two drugs show dramatically different release profiles according to environmental temperature and pH, due to the localization of drugs and the stimuli‐dependent property of its protective shells. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44335.  相似文献   

10.
Poly(2,4‐dimethyl‐1,4‐phenylene oxide) (PPO), poly(benzo[1,2‐d:5,4‐d′]bisoxazole‐2,6‐diyl‐1,4‐phenylene) (PBO) and poly(benzo[1,2‐d:4,5‐d′]bisthiazole‐2,6‐diyl‐1,4‐phenylene) (PBZT), which are polymers with extended conjugated structures, undergo a self‐sensitized photo‐induced electron‐transfer reaction. A second component is not required. This article presents many similar observations on these polymers when they are exposed to light and evidence to support the proposed photo‐induced electron‐transfer mechanism. Methods to stabilize these polymers against photo‐oxidation are also described. Workers investigating other conjugated polymeric systems may find the experimental methods, observations and polymer stabilization approaches discussed in this review useful. Copyright © 2005 Society of Chemical Industry  相似文献   

11.
A series of poly(2‐alkyloyloxyethylacrylate) and poly(2‐alkyloyloxyethylacrylate‐co‐methylacrylate) polymers as novel polymeric phase‐change materials (PCMs) were synthesized starting from 2‐hydroxyethylacrylate and fatty acids. The chemical structure and crystalline morphology of the synthesized copolymers were characterized with Fourier transform infrared and 1H‐NMR spectroscopy and polarized optical microscopy, respectively, and their thermal energy storage properties and thermal stability were investigated with differential scanning calorimetry and thermogravimetric analysis, respectively. The thermal conductivities of the PCMs were also measured with a thermal property analyzer. Moreover, thermal cycling testing showed that the copolymers had good thermal reliability and chemical stability after they were subjected to 1000 heating/cooling cycles. The synthesized poly(2‐alkyloyloxyethylacrylate) polymers and poly(2‐alkyloyloxyethylacrylate‐co‐methylacrylate) copolymers as novel PCMs have considerable potential for thermal energy storage and temperature‐control applications. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
The effects of the monomer ratio, surfactant, and crosslinker contents on the particle size and phase‐transition behavior of the copolymer poly(N‐isopropylacrylamide‐co‐methacrylic acid) (PNIPAAm–MAA) were investigated with Fourier transform infrared, differential scanning calorimetry, and dynamic laser scattering techniques. In addition to the thermoresponsive property of poly(N‐isopropylacrylamide), ionized methacrylic acid groups brought pH sensitivity to the PNIPAAm–MAA copolymer particles. The polymer particle size varied with the amounts of the monomer ratio, surfactant, and crosslinker. As the monomer ratio and crosslinker content increased and the amount of the surfactants decreased, the particle size increased. The influence of the crosslinker content on the particle size was less significant than the effect of the monomer ratio and surfactants. When the temperature increased, the particles tended to shrink and decreased in size to near or below 100 nm. Particle sizes at 20°C decreased to less than 100 nm with increased surfactant content. The control of the particle size within the 100‐nm range makes PNIPAAm–MAA copolymer particles useful for biomedical and heavy‐metal‐ion adsorption applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
A novel precursor, 1,2‐bis[6‐(9H‐carbazol‐9‐yl)hexyloxy] benzene (BCHB), was successfully synthesized. Its polycarbazole‐functionalized polycatechol network films, poly{1,2‐bis[6‐(9H‐carbazol‐9‐yl)hexyloxy] benzene} (PBCHB), with good redox activity were formed by the direct anodic oxidation of BCHB in CH2Cl2 and boron trifluoride diethyl etherate binary solvent solution. Ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, 1H‐NMR, and matrix‐assisted laser desorption ionization–time of flight mass spectrometry were used to characterize the polymers. The results indicate that the network polymers could be synthesized electrochemically with different polymerized units by controlled electropolymerization. The PBCHB films prepared at low potential were oligomers with short conjugation lengths and were soluble in common organic solvents, whereas the polymers with long conjugation lengths and hyperbranched network structures obtained at high potential were insoluble. The electrosynthesized polymers exhibited blue emission maxima around 450 nm and were much more redshifted than their monomer. The emissions were also brighter; this indicated the polymers are potential good blue‐light emitters. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
End‐capped poly(ε‐caprolactone)s (PCLs) have been prepared elsewhere by various initiators. However, hydroxytelechelic PCLs have been reported less frequently, although there are two hydroxyl end groups in one polymer chain, which allows diversified functionalization. Two tetrahydrosalen‐backboned chlorides containing rare‐earth complexes, YbLCl(DME)2 and ErLCl(DME) {where L is 6,6′‐[ethane‐1,2‐diylbis(methylazanediyl)]bis (methylene)bis(2,4‐di‐tert‐butylphenol) and DME is dimethoxyethane}, were first synthesized in this study, and they were used as initiator precursors for a ring‐opening polymerization in the presence of NaBH4 to afford hydroxytelechelic PCLs. The polymerization under different conditions was investigated, and a possible mechanism is proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
In this study, pH responsive polymers composed of methacrylic acid, acrylamide, and N‐hydroxyethyl acrylamide were synthesized by free radical polymerization technique. The characterization was done with Fourier transform infrared spectroscopy and scanning electron microscopy. The swelling and drug release behavior of the hydrogels was determined as a function of time at 37°C in pH 2.1 and 7.4. The swelling and drug release studies showed that increased methacrylic acid amount caused a higher increase in swelling and drug release values at pH 7.4 than those at pH 2.1. In addition, the drug release data were applied to kinetic models such as zero order, first order, and Higuchi equations, and it fit well in the Higuchi model of the hydrogel. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43226.  相似文献   

16.
Three new soluble polyconjugated polymers, all of which emitted blue light in photoluminescence and electroluminescence, were synthesized, and their luminescence properties were studied. The polymers were poly{1,1′‐biphenyl‐4,4′‐diyl‐[1‐(4‐t‐butylphenyl)]vinylene}, poly((9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐{1,4‐phenylene‐[1‐(4‐t‐butylphenyl)vinylene‐1,4‐phenylene]}) [P(DOF‐PVP)], and poly([N‐(2‐ethyl) hexylcarbazole‐3,6‐diyl]‐alt‐{1,4‐phenylene‐[1‐(4‐t‐butylphenyl)]vinylene‐1,4‐phenylene}). The last two polymers had alternating sequences of the two structural units. Among the three polymers, P(DOF‐PVP) performed best in the light‐emitting diode devices of indium–tin oxide/poly(ethylenedioxythiophene) doped with poly(styrene sulfonate) (30 nm)/polymer (150 nm)/Li:Al (100 nm). This might have been correlated with the balance in and magnitude of the mobility of the charge carriers, that is, positive holes and electrons, and also the electronic structure, that is, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels, of the polymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 307–317, 2006  相似文献   

17.
A photochemical reaction between acridine and poly(methyl methacrylate‐co‐methacrylic acid) (PMCA) was studied in benzene to build a recyclable polymer photodegradation system. The illumination of acridine in the presence of PMCA with 365‐nm light induced the bleaching of acridine and the degradation of PMCA. The average molecular weight of the degraded polymer decreased rapidly for the first 30 min of the photolysis. A nonvolatile product of this reaction was found to have a 2‐methyl‐2‐propenyl end group. The efficiency of the PMCA scission by this method was 30 times as large as that of poly(methyl methacrylate). These results suggest that an efficient photochemical polymer decomposition system can be built by adding the mixing process of a little methacrylic acid into the synthetic processes of general vinyl polymers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1209–1212, 2005  相似文献   

18.
Highly reflective, surface‐metalized, flexible polyimide films were prepared by the incorporation of a soluble silver‐ion complex, (hexafluoroacetylacetonato)silver(I) (AgHFA), into dimethylacetamide solutions of poly(amic acid) prepared from 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane. The thermal curing of solution‐cast silver(I)–poly(amic acid) films to 300°C led to cycloimidization of the amic acid with concomitant silver(I) reduction and the formation of a reflective, air‐side‐silvered surface at very low (2 wt % and 0.3 vol %) silver concentrations. The reflective surface evolved only when the cure temperature reached about 275°C, although X‐ray diffraction showed metallic silver in the hybrid film by 200°C. After a maximum specular reflectivity greater than 80% was achieved for the 2 wt % silver film, the specular reflectivity diminished sharply with further heating at a constant temperature of 300°C. Incorporating the AgHFA complex into the soluble, fully imidized form of poly{(1,3‐dihydro‐1,3‐dioxo‐2H‐isoindole‐2,5‐diyl)[2,2,2‐trifluoro‐1‐(trifluoromethyl)ethylidene](1,3‐dihydro‐1,3‐dioxo‐2H‐isoindole‐5,2‐diyl)‐1,4‐phenyleneoxy‐1,4‐phenylene[2,2,2‐trifluoro‐1‐(trifluoromethyl)ethylidene]‐1,4‐phenyleneoxy‐1,4‐phenylene} gave films that were 25% less reflective than those beginning with poly(amic acid). Though highly reflective, the films were not electrically conductive. The metalized membranes were thermally stable and maintained mechanical properties similar to those of the parent polyimide. Transmission electron microscopy revealed an air‐side, near‐surface layer of silver that was about 40 nm thick; the interior of the film had well‐dispersed metal particles with diameters mostly less than 2 nm. The near‐surface silver layer maintained its integrity because of physical entrapment of the metal nanoparticles beneath a thin layer of polyimide; that is, the practical adhesion of the metal layer was good. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2409–2418, 2007  相似文献   

19.
Two new poly(arylene ethynylenes) were synthesized by the reaction of 1,4‐diethynyl‐2.5‐dioctylbenzene either with 4,4′‐diiodo‐3,3′‐dimethyl‐1,1′‐biphenyl or 2,7‐diiodo‐9,9‐dioctylfluorene via the Sonogashira reaction, and their photoluminescence (PL) and electroluminescence (EL) properties were studied. The new poly(arylene ethynylenes) were poly[(3,3′‐dimethyl‐1,1′‐biphenyl‐4,4′‐diyl)‐1,2‐ethynediyl‐(2,5‐dioctyl‐1,4‐phenylene)‐1,2‐ethynediyl] (PPEBE) and poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐1,2‐ethynediyl‐(2,5‐dioctyl‐1,4‐phenylene)‐1,2‐ethynediyl] (PPEFE), both of which were blue‐light emitters. PPEBE not only emitted better blue light than PPEFE, but it also performed better in EL than the latter when the light‐emitting diode devices were constructed with the configuration indium–tin oxide/poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid) (50 nm)/polymer (80 nm)/Ca:Al. The device constructed with PPEBE exhibited an external quantum efficiency of 0.29 cd/A and a maximum brightness of about 560 cd/m2, with its EL spectrum showing emitting light maxima at λ = 445 and 472 nm. The device with PPEFE exhibited an efficiency of 0.10 cd/A and a maximum brightness of about 270 cd/m2, with its EL spectrum showing an emitting light maximum at λ = 473 nm. Hole mobility (μh) and electron mobility (μe) of the polymers were determined by the time‐of‐flight method. Both polymers showed faster μh values. PPEBE revealed a μh of 2.0 × 10?4 cm2/V·s at an electric field of 1.9 × 105 V/cm and a μe of 7.0 × 10?5 cm2/V·s at an electric field of 1.9 × 105 V/cm. In contrast, the mobilities of the both carriers were slower for PPEFE, and its μh (8.0 × 10?6 cm2/V·s at an electric field of 1.7 × 106 V/cm) was 120 times its μe (6.5 × 10?8 cm2/V·s at an electric field of 8.6 × 105 V/cm). The much better balance in the carriers' mobilities appeared to be the major reason for the better device performance of PPEBE than PPEFE. Their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels were also a little different from each other. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 299–306, 2006  相似文献   

20.
Pyromellitic dianhydride (1,2,4,5‐benzenetetracarboxylic acid 1,2,4,5‐dianhydide) (1) was reacted with L‐phenylalanine (2) in a mixture of acetic acid and pyridine (3 : 2) at room temperature, then was refluxed at 90–100°C and N,N′‐(Pyromellitoyl)‐bis‐L ‐phenylalanine diacid (3) was obtained in quantitative yield. The imide‐acid (3) was converted to N,N′‐(Pyromellitoyl)‐bis‐L ‐phenylalanine diacid chloride (4) by reaction with thionyl chloride. Rapid and highly efficient synthesis of poly(amide‐imide)s (6a–f) was achieved under microwave irradiation by using a domestic microwave oven from the polycondensation reactions of N,N′‐(Pyromellitoyl)‐bis‐L ‐phenylalanine diacid chloride (4) with six different derivatives of 5,5‐disubstituted hydantoin compounds (5a–f) in the presence of a small amount of a polar organic medium that acts as a primary microwave absorber. Suitable organic media was o‐cresol. The polycondensation proceeded rapidly, compared with the conventional melt polycondensation and solution polycondensation, and was almost completed within 10 min, giving a series of poly(amide‐imide)s with inherent viscosities about 0.28–0.44 dL/g. The resulting poly(amide‐imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by means of FTIR spectroscopy, elemental analyses, inherent viscosity (ηinh), solubility test and specific rotation. Thermal properties of the poly(amide‐imide)s were investigated using thermal gravimetric analysis (TGA). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 516–524, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号