首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Specialized varieties of sugar beets (Beta vulgaris L.) may be an eligible feedstock for advanced biofuel designation under the USA Energy Independence and Security Act of 2007. These non-food industrial beets could double ethanol production per hectare compared to alternative feedstocks. A mixed-integer mathematical programming model was constructed to determine the breakeven price of ethanol produced from industrial beets, and to determine the optimal size and biorefinery location. The model, based on limited field data, evaluates Southern Plains beet production in a 3-year crop rotation, and beet harvest, transportation, and processing. The optimal strategy depends critically on several assumptions including a just-in-time harvest and delivery system that remains to be tested in field trials. Based on a wet beet to ethanol conversion rate of 110 dm3 Mg−1 and capital cost of 128 M$ for a 152 dam3 y−1 biorefinery, the estimated breakeven ethanol price was 507 $ m−3. The average breakeven production cost of corn (Zea mays L.) grain ethanol ranged from 430 to 552 $ m−3 based on average net corn feedstock cost of 254 and 396 $ m−3 in 2014 and 2013, respectively. The estimated net beet ethanol delivered cost of 207 $ m−3 was lower than the average net corn feedstock cost of 254–396$ m−3 in 2013 and 2014. If for a mature industry, the cost to process beets was equal to the cost to process corn, the beet breakeven ethanol price would be $387 m-3 (587 $ m−3 gasoline equivalent).  相似文献   

2.
This research develops a linear programming (LP) model to assess various options for sugar and biofuel production from sugarcane and other feedstock in Hawaii. More specifically, the study focuses on finding optimal sugar and biomass feedstock that would maximize producer profits in the production of sugar, ethanol and electricity. Feedstock included in the model were sugarcane, banagrass, energy cane and sweet sorghum. Given available land resources for growing energy crops on the island of Maui, four land resource scenarios were considered. If available land resources were used in the production of sugarcane and energy crops with added utilization of non-prime lands, Hawaii's ethanol goal for year 2020 could be achieved while maintaining two-thirds of Hawaii's current sugar production. Crop yields and unit production costs are key factors in determining optimal quantities of feedstock in the optimization model tested in this study.  相似文献   

3.
One necessary criterion for a biofuel to be a sustainable alternative to the petroleum fuels it displaces is a positive net energy balance. This study estimated the net energy ratio (NER), net energy balance (NEB), and net energy yield (NEY) of small-scale on-farm production of canola [Brassica napus (L.)] and soybean [Glycine max (L.)] biodiesel in the upper Midwest. Direct and embodied energy inputs based on well-defined system boundaries and contemporary data were used to estimate the energy requirement of crop production, oil extraction, and biofuel processing. The NER of canola biodiesel was 1.78 compared with 2.05 for soybean biodiesel. Canola biodiesel had a NEB of 0.66 MJ MJ−1 of biofuel compared with 0.81 MJ MJ−1 for soybean biodiesel. The NEY of soybean biodiesel was 10,951 MJ ha−1, less than canola biodiesel which had a NEY of 11,353 MJ ha−1. Use of soybean as a biodiesel feedstock was more energetically efficient than canola primarily due to reduced nitrogen fertilizer requirement. In terms of energetic productivity, canola was a more productive biodiesel feedstock than soybean due to its higher oil content. A best-case scenario based on optimal feedstock yields, reduced fertilizer input, and advanced biofuel processing equipment suggested that potential gains in energetic efficiency was greater for canola than soybean. According to our results, small-scale on-farm biodiesel production using canola and soybean can be an energetically efficient way to produce energy for on-farm use.  相似文献   

4.
This study examines the financial feasibility of producing ethanol biofuel from sugar beets in central North Dakota. Under the Energy Independence and Security Act (EISA) of 2007, biofuel from sugar beets uniquely qualifies as an “advanced biofuel”. EISA mandates production of 21 billion gallons of advanced biofuels annually by 2022. A stochastic simulation financial model was calibrated with irrigated sugar beet data from central North Dakota to determine economic feasibility and risks of production for 0.038 hm3y−1 (or 10 MGY (Million Gallon per Year) and 0.076 hm3y−1 (or 20 MGY) ethanol plants. Study results indicate that feedstock costs, which include sugar beets and beet molasses, account for more than 70 percent of total production expenses. The estimated breakeven ethanol price for the 0.076 hm3y−1 plant is $400 m−3 ($1.52 per gallon) and $450 m−3 ($1.71 per gallon) for the 0.038 hm3y−1 plant. Breakeven prices for feedstocks are also estimated and show that the 0.076 hm3y−1 plant can tolerate greater ethanol and feedstock price risks than the 0.038 hm3y−1 plant. Our results also show that one of the most important factors that affect investment success is the price of ethanol. At an ethanol price of $484.21 m−3 ($1.84 per gallon), and assuming other factors remain unchanged, the estimated net present value (NPV) for the 0.076 hm3y−1 plant is $41.54 million. By comparison, the estimated NPV for the 0.038 hm3y−1 plant is only $8.30 million. Other factors such as changes in prices of co-products and utilities have a relatively minor effect on investment viability.  相似文献   

5.
This study examines the feasibility of producing sweet sorghum (Sorghum bicolor (L.) Moench) as an ethanol feedstock in the southeastern United States through representative counties in Mississippi. We construct enterprise budgets along with estimates of transportation costs to estimate sweet sorghum producers’ breakeven costs for producing and delivering sweet sorghum biomass. This breakeven cost for the sweet sorghum producer is used to estimate breakeven costs for the ethanol producer based on wholesale ethanol price, production costs, and transportation and marketing costs. Stochastic models are developed to estimate profits for sweet sorghum and competing crops in two representative counties in Mississippi, with sweet sorghum consistently yielding losses in both counties.  相似文献   

6.
Algal biomass can provide viable third generation feedstock for liquid transportation fuel. However, for a mature commercial industry to develop, sustainability as well as technological and economic issues pertinent to algal biofuel sector must be addressed first. This viewpoint focuses on three integrated approaches laid out to meet these challenges. Firstly, an integrated algal biorefinery for sequential biomass processing for multiple high-value products is delineated to bring in the financial sustainability to the algal biofuel production units. Secondly, an integrated renewable energy park (IREP) approach is proposed for amalgamating various renewable energy industries established in different locations. This would aid in synergistic and efficient electricity and liquid biofuel production with zero net carbon emissions while obviating numerous sustainability issues such as productive usage of agricultural land, water, and fossil fuel usage. A ‘renewable energy corridor’ rich in multiple energy sources needed for algal biofuel production for deploying IREPs in the United States is also illustrated. Finally, the integration of various industries with algal biofuel sector can bring a multitude of sustainable deliverables to society, such as renewable supply of cheap protein supplements, health products and aquafeed ingredients. The benefits, challenges, and policy needs of the IREP approach are also discussed.  相似文献   

7.
The increasing thirst for energy to fuel its fast growing economy has made China keen to explore the potential of modern form of bioenergy, biofuel. This study investigates the land and water requirements of biofuel in China with reference to the government biofuel development plans for 2010 and 2020. The concept of land and water footprints of biofuel is applied for the investigation. The result shows that the current level of bioethanol production consumes 3.5–4% of total maize production of the country, reducing market availability of maize for other uses by about 6%. It is projected that depending on the types of feedstock, 5–10% of the total cultivated land in China would need to be devoted to meet the biofuel production target of 12 million metric tons for the year 2020. The associated water requirement would amount to 32–72 km3 per year, approximately equivalent to the annual discharge of the Yellow River. The net contribution of biofuel to the national energy pool could be limited due to generally low net energy return of conventional feedstocks. The current biofuel development paths could pose significant impacts on China's food supply and trade, as well as the environment.  相似文献   

8.
The multi-actor multi-criteria analysis (MAMCA) is a methodology to evaluate different policy measures, whereby different stakeholders’ opinions are explicitly taken into account. In this paper, the framework is used to assess several biofuel options for Belgium that can contribute to the binding target of 10% renewable fuels in transport by 2020, issued by the Renewable Energy Directive (RED). Four biofuel options (biodiesel, ethanol, biogas and synthetic biodiesel (also referred to as “biomass-to-liquid” or BTL)) together with a reference fossil fuel option, are evaluated on the aims and objectives of the different stakeholders involved in the biofuel supply chain (feedstock producers, biofuel producers, fuel distributors, end users, vehicle manufacturers, government, NGOs and North–South organizations). Overall, the MAMCA provided insights in the stakeholder’s position and possible implementation problems for every biofuel option. As such, it helps decision makers in establishing a supportive policy framework to facilitate implementation and to ensure market success, once they have decided on which biofuel option (or combination of options) to implement.  相似文献   

9.
We estimate the role of biofuel policies in determining which country is the price leader in world biofuel markets using a cointegration analysis and a Vector Error Correction (VEC) model. Weekly prices are analyzed for the EU, US, and Brazilian ethanol and biodiesel markets in the 2002–2010 and 2005–2010 time periods, respectively. The US blender's tax credit and Brazil's consumer tax exemption are found to play a role in determining the ethanol prices in other countries. For biodiesel, our results demonstrate that EU policies – the consumer tax exemption and blending target – tend to determine the world biodiesel price.  相似文献   

10.
A country level spatially explicit mixed integer linear programming model has been applied to identify the optimal Fischer Tropsch biodiesel production plants locations in Finland. The optimal plant locations with least cost options are identified by minimizing the complete costs of the supply chain with respect to feedstock supply (energywood, pulpwood, sawmill residuals, wood imports), industrial competition (pulp mill, sawmill, combined heat and power plants, pellet industries) and energy demand (biodiesel, heat, biofuel import). Model results show that five biodiesel production plants of 390 MWfeedstock are needed to be built to meet the 2020 renewable energy target in transport (25.2 PJ). Given current market conditions, the Fischer Tropsch biodiesel can be produced at a cost around 18 €/GJ including by-products income. Furthermore, the parameter sensitivity analysis shows that the production plant parameters such as investment costs and conversion efficiency are found to have profound influence on the biodiesel cost, and then followed by feedstock cost and plant size. In addition, the variations in feedstock costs and industrial competition determine the proportion of feedstock resource allocation to the production plants. The results of this study could help decision makers to strategically locate the FT-biodiesel production plants in Finland.  相似文献   

11.
Bioenergy production involves a series of interrelated activities associated with feedstock production and feedstock-to-energy conversion. Thus, decisions on bioenergy production and deployment should be based on the simultaneous consideration of the entire supply chain. Based on cost minimization of both feedstock production and energy conversion, we develop a generic framework for determining the optimal bioenergy conversion plant size, the corresponding feedstock supply radius, and bioenergy production costs. The theoretical framework elucidates the relationships among activities along the bioenergy supply chain, suggesting strategies for enhancing the cost competitiveness of bioenergy. Such relationships as well as applications of our theoretical model are further illustrated using cases of producing electricity and cellulosic ethanol from biomass.  相似文献   

12.
Forest residues are renewable materials for bioenergy conversion that have the potential to replace fossil fuels beyond electricity and heat generation. A challenge hindering the intensified use of forest residues for energy production is the high cost of their supply chain. Previous studies on optimal design of forest residue supply chains focused on biofuel or bioenergy production separately, mostly with a single time period approach. We present a multi‐period mixed integer linear programming model that optimizes the supply chain of forest residues for the production of bioenergy and biofuels simultaneously. The model determines (i) the location, type and size of the technologies to install and the period to install them, (ii) the mix of biofuel and bioenergy products to generate, (iii) the type and amount of forest residues to acquire and the sourcing points, (iv) the amount of forest residues to transport from sources to facilities and (v) the amount of product to transport from facilities to markets. The objective of the model is to maximize the net present value of the supply chain over a 20‐year planning horizon with yearly time steps. We applied the model to a case study in British Columbia, Canada, to investigate the production of heat, electricity, pellets and pyrolysis bio‐oil from available forest harvesting residues and sawmill wastes. Based on current energy generation costs in the region and the predicted operating costs of new conversion plants, the results of our model recommended the installation of small biomass boilers coupled with steam turbines for electricity production (0.5 and 5 MW) and pyrolysis plants with a capacity of 200 and 400 odmt day?1. We performed a sensitivity analysis to evaluate the sensitivity of the optimal result to changes in the demand and price of products, as well as the availability and cost of forest residues. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
There is growing interest in the production of biofuels from woody biomass. Critical to the financial success of producing biofuel is identifying the optimal location for the facility. The location decision is especially important for woody biomass feedstock owing to the distributed nature of biomass and the significant costs associated with transportation. This study introduces a two-stage methodology to identify the best location for biofuel production based on multiple attributes. Stage I uses a Geographic Information System approach to identify feasible biofuel facility locations. The approach employs county boundaries, a county-based pulpwood distribution, a population census, city and village distributions, and railroad and state/federal road transportation networks. In Stage II, the preferred location is selected using a total transportation cost model. The methodology is applied to the Upper Peninsula of Michigan to locate a biofuel production facility. Through the application of the two-stage methodology, the best possible location for biofuel production was identified as the Village of L’anse in Baraga County. Also investigated are the sensitivity of transportation cost and the optimal site for biofuel production to changes in several key variables. These additional variables included fuel price, transportation distance, and pulpwood availability. By applying sensitivity analysis based on limited availability of feedstock, the City of Ishpeming emerged as another viable location for the production facility.  相似文献   

14.
While the cost competitiveness of vegetable oil-based biofuels (VOBB) has impeded extensive commercialization on a large-scale, the economic viability of small-scale on-farm production of VOBB is unclear. This study assessed the cost competitiveness of small-scale on-farm production of canola- [Brassica napus (L.)] and soybean-based [Glycine max (L.)] biodiesel and straight vegetable oil (SVO) biofuels in the upper Midwest at 2007 price levels. The effects of feedstock type, feedstock valuation (cost of production or market price), biofuel type, and capitalization level on the cost L−1 of biofuel were examined. Valuing feedstock at the cost of production, the cost of canola-based biodiesel ranged from 0.94 to 1.13 $ L−1 and SVO from 0.64 to 0.83 $ L−1 depending on capitalization level. Comparatively, the cost of soybean-based biodiesel and SVO ranged from 0.40 to 0.60 $ L−1 and from 0.14 to 0.33 $ L−1, respectively, depending on capitalization level. Valuing feedstock at the cost of production, soybean biofuels were cost competitive whereas canola biofuels were not. Valuing feedstock at its market price, canola biofuels were more cost competitive than soybean-based biofuels, though neither were cost competitive with petroleum diesel. Feedstock type proved important in terms of the meal co-product credit, which decreased the cost of biodiesel by 1.39 $ L−1 for soybean and 0.44 $ L−1 for canola. SVO was less costly to produce than biodiesel due to reduced input costs. At a small scale, capital expenditures have a substantial impact on the cost of biofuel, ranging from 0.03 to 0.25 $ L−1.  相似文献   

15.
Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed.  相似文献   

16.
We develop a long-run cellulosic biofuel cost model that minimizes feedstock procurement and processing costs per gallon. The distinguishing feature of the model is that it accounts for the procurement tradeoff between the intensive margin (biomass producers' participation rate) and extensive margin (biomass capture region). To investigate the extent to which this procurement tradeoff affects processors' cost-minimizing decisions, we apply the model to switchgrass ethanol production in U.S. crop reporting districts. Results suggest that location characteristics will determine the extent to which processors can reduce their total procurement costs by offering a higher biomass price to increase participation near the plant and reduce transportation costs.  相似文献   

17.
Due to issues relating to the sustainability of biofuel production, second generation biofuel has attracted much attention. As a promising feedstock of second generation biodiesel, Jatropha curcas L. (JCL) is being massively planted on marginal land in China, but its viability as a biofuel source has not been systematically assessed. This paper performed a lifecycle assessment of the economic, environmental and energy (3E) performance of the JCL biodiesel, assuming JCL oil is either used for direct blending with diesel or further processed into JCL methyl ester (JME). The results show that, at the current technical levels, the production of JCL biodiesel is financially infeasible, but has positive environmental and energy performance. Despite the additional cost incurred in the transesterification process, the net present value of JME is slightly higher than that of JCL oil when a part of the cost is allocated to the co-product, i.e., glycerin. As compared with that of diesel, the production and consumption of per liter JCL oil and JME can reduce 7.34 kg and 8.04 kg CO2 equivalent, respectively. The energy balances of both JCL oil and JME are 1.57 and 1.47, respectively, in terms of the ratio of the heat value of biodiesel and that of energy input. The main factors affecting the 3E performance of JCL biodiesel are seed yield, co-product output, and farm energy input.  相似文献   

18.
An assessment of ethanol production potential from dedicated energy crops was conducted for the State of Hawaii considering lands, crop species, and conversion technologies. Evaluation of the spatial distributions of soil types, zoning, and annual rainfall was conducted using geographic information system data. Saccharum officinarum (sugarcane), Pennisetum purpureum (banagrass), Leucaena leucocephala, and Eucalyptus grandis were selected as potential feedstocks for sugar-based and lignocellulosic ethanol production.The analysis shows that only one cropping scenario applied to all available agriculturally zoned lands in the state would be capable of producing enough ethanol to meet the state's current motor gasoline consumption on an energy equivalent basis. State goals of displacing 20% (volume) of highway fuels by 2020 could be met by 14 of the 16 cropping and land use combinations. This indicates that the State of Hawaii could promote energy diversification through its choice of land leases. Distribution of suitable lands among islands is not consistent with motor fuel demand, suggesting that provisions must be made to support development of adequate storage and harbor facilities to enable movement of fuel between points of production and use. Comparison of possible production volumes with economic plant sizes indicates that sufficient feedstocks could be available on Maui, Hawaii, Oahu, and Kauai to realize economies of scale in production facilities.This study should be refined in the future to adequately address issues of environmental preservation, water consumption, and land use to provide additional guidance for policy and economic decision making.  相似文献   

19.
Progress in the production and application of n-butanol as a biofuel   总被引:1,自引:0,他引:1  
Butanol is a very competitive renewable biofuel for use in internal combustion engines given its many advantages. In this review, the properties of butanol are compared with the conventional gasoline, diesel fuel, and some widely used biofuels, i.e. methanol, ethanol, biodiesel. The comparison of fuel properties indicates that n-butanol has the potential to overcome the drawbacks brought by low-carbon alcohols or biodiesel. Then, the development of butanol production is reviewed and various methods for increasing fermentative butanol production are introduced in detailed, i.e. metabolic engineering of the Clostridia, advanced fermentation technique. The most costive part of the fermentation is the substrate, so methods involved in renewed substrates are also mentioned. Next, the applications of butanol as a biofuel are summarized from three aspects: (1) fundamental combustion experiments in some well-defined burning reactors; (2) a substitute for gasoline in spark ignition engine; (3) a substitute for diesel fuel in compression ignition engine. These studies demonstrate that butanol, as a potential second generation biofuel, is a better alternative for the gasoline or diesel fuel, from the viewpoints of combustion characteristics, engine performance, and exhaust emissions. However, butanol has not been intensively studied when compared to ethanol or biodiesel, for which considerable numbers of reports are available. Finally, some challenges and future research directions are outlined in the last section of this review.  相似文献   

20.
There is a lack of comprehensive information in the retrievable literature on pilot scale process and energy data using promising process technologies and commercially scalable and available capital equipment for lignocellulosic biomass biorefining. This study conducted a comprehensive review of the energy efficiency of selected sugar platform biorefinery process concepts for biofuel production from lignocelluloses. The process data from approximately a dozen studies that represent state-of-the-art in cellulosic biofuel production concepts, along with literature energy input data for agriculture operations, were analyzed to provide estimates of net energy production. It was found that proper allocation of energy input for fertilizer and pesticides to lignocellulosic biomass and major agriculture or forestry products, such as corn and lumber in corn farming and lumber plantations, respectively, were critical. The significant discrepancies in literature data suggest studies are needed to determine energy inputs for fuel in farming and farm machinery. Increasing solids loading in pretreatment to at least 25% is critical to reducing energy input in a biorefinery. Post thermo-chemical pretreatment size reduction approach should be adopted for energy efficient woody biomass processing. When appropriate pretreatment technologies are used, woody biomass can be processed as efficiently as herbaceous biomass and agricultural residues. Net energy output for cellulosic ethanol was estimated to range approximately from −500–2000 MJ/ton biomass (HHV base); indicating that the energy input/output ratio is approximately 1:1 for cellulosic ethanol. However, net energy can reach approximately 4000–7000 MJ/ton of biomass when energy from lignin is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号