首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
EU targets and regulations regarding energy production and the reduction of greenhouse gas emissions have been tightening in the 2000s. In Finland the targets are planned to be achieved mainly by increasing the use of biomass. Wood already accounts for a marked proportion of Finnish energy production, but additional reserves are still available. Energy crop production also has considerable potential. Practically all Finnish farmers are also forest owners. Therefore, private forest owners are in a decisive position regarding the supply of energy wood and crops in Finland. In this paper the future supply of biomass is examined according to their past behaviour, intentions and attitudes. Finnish forest owners have a positive attitude towards the use of wood and crops in energy production. Price is becoming more critical as a motive for the supply of energy wood. Recreation and nature conservation play a smaller role than factors related to wood production and forest management as for motives for harvesting energy wood. However, almost a half of forest owners in this study were uncertain of their willingness to supply biomass. This is partly due to limited knowledge of the issues involved in energy wood and agricultural energy crop production and the underdeveloped markets for energy biomass. In order to achieve the targets, supply should be activated by further developing market practices, information, guidance and possibly other incentives for landowners. In general, there is interest among landowners in increasing the supply of energy biomass. However, the growth of supply presumes that production is an economically attractive and competitive alternative, that the markets are better organized than at present, and that more comprehensive information is available about bioenergy and biomass markets and production techniques.  相似文献   

2.
The increasing world's energy demand and environmental concerns related to GHG emissions as well as depleting fossil fuel resources and unstable prices of crude oil and natural gas have caused a renewed interest in renewable energy sources, and in particularly in biomass, as an alternative to fossil fuels. In the paper the results of steam gasification of Salix Viminalis, Miscanthus X Giganteus (MXG), and Andropogon Gerardi in a laboratory-scale fixed bed reactor in the temperature range of 650–900 °C are presented as well as the procedure and results of biomass chars reactivity testing in the process of steam gasification. The highest reactivity R50 in the whole temperature range was observed for MXG. Hydrogen content in the synthesis gas was comparable for MXG and Andropogon Gerardi and lower for Salix Viminalis, while the volumes of the synthesis gas and hydrogen were highest for MXG at all temperatures.  相似文献   

3.
This article is the result of an analysis into the behavior of several forest species that could be used as energy crops in Cantabria. The species studied belong to several botanical genera. The study was conducted in several stages: firstly, the species was introduced to explore growth data and discard those species of slower growth. Once the genus maximising the biomass production was determined, several species of it were studied from the energy perspective. This combination of both allows the energy density for each species to be obtained, therefore making it possible to determine how big a cultivation area is required for a specific thermal power plant. Thus, for a power plant of 10 MWe, between 15,451 and 24,578 ha of Eucalyptus would be necessary, depending on the species chosen, at an approximate age of 4 years.  相似文献   

4.
Ibrahim Yüksel   《Renewable Energy》2008,33(4):802-812
Turkey, with its young population and growing energy demand per person, its fast growing urbanization, and its economic development, has been one of the fast growing power markets of the world for the last two decades. It is expected that the demand for electric energy in Turkey will be 300 billion kWh by the year 2010 and 580 billion kWh by the year 2020. Turkey is heavily dependent on expensive imported energy resources that place a big burden on the economy and air pollution is becoming a great environmental concern in the country. In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. This article presents a review of the potential and utilization of the renewable energy sources in Turkey.  相似文献   

5.
In several policy documents bioenergy is recognized as an important renewable energy source in Italy. The increase in energy prices represents an opportunity for lignocellulosic energy crops such as acacia and poplar.  相似文献   

6.
A novel system of hydrogen production by biomass gasification in supercritical water using concentrated solar energy has been constructed, installed and tested at the State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF). The “proof of concept” tests for solar-thermal gasification of biomass in supercritical water (SCW) were successfully carried out. Biomass model compounds (glucose) and real biomass (corn meal, wheat stalk) were gasified continuously with the novel system to produce hydrogen-rich gas. The effect of direct normal solar irradiation (DNI) and catalyst on gasification of biomass was also investigated. The results showed that the maximal gasification efficiency (the mass of product gas/the mass of feedstock) in excess of 110% were reached, hydrogen fraction in the gas product also approached to 50%. The experimental results confirmed the feasibility of the system and the advantage of the process, which supports future work to address the technical issues and develop the technology of solar-thermal hydrogen production by gasification of biomass in supercritical water.  相似文献   

7.
The rising price of fossil fuel and the increasing environmental concern encourage the use of biomasses as energy sources. Aim of this study was to compare two poplar SRC and vSRC (6 and 3 years rotation cycle) with an annual crop (maize), used for biomass production in north Italy.The average of the biomass production was 13.9 Mg DM ha−1 per year for the SRC and vSRC poplar and 19.2 Mg DM ha−1 for the maize.The energy consumption for the poplar cultivations was about 15 GJ ha−1 per year, which represented only the 6% of the energy biomass product (about 257 GJ ha−1 per year).The input value of the maize was higher (26.8 GJ ha−1 per year). In this case, the input value was about the 7% of the energy content in the biomass product (about 370 GJ ha−1 per year).During the vSRC cultivation an amount of 8090 kg CO2 eq ha−1 was emitted, 6420 kg CO2 eq ha−1 for the SRC and 26,370 kg CO2 eq ha−1 for the maize.Compared to the maize, the poplar SRC (or vSRC) crops are interesting from an energetic point of view, while maize requires less manpower, but it has major problems related to the landscape biodiversity.  相似文献   

8.
Energy and exergy analyses are reported of hydrogen production via an ocean thermal energy conversion (OTEC) system coupled with a solar-enhanced proton exchange membrane (PEM) electrolyzer. This system is composed of a turbine, an evaporator, a condenser, a pump, a solar collector and a PEM electrolyzer. Electricity is generated in the turbine, which is used by the PEM electrolyzer to produce hydrogen. A simulation program using Matlab software is developed to model the PEM electrolyzer and OTEC system. The simulation model for the PEM electrolyzer used in this study is validated with experimental data from the literature. The amount of hydrogen produced, the exergy destruction of each component and the overall system, and the exergy efficiency of the system are calculated. To better understand the effect of various parameters on system performance, a parametric analysis is carried out. The energy and exergy efficiencies of the integrated OTEC system are 3.6% and 22.7% respectively, and the exergy efficiency of the PEM electrolyzer is about 56.5% while the amount of hydrogen produced by it is 1.2 kg/h.  相似文献   

9.
In the paper energy crops of considerable cultivation potential in Poland, namely: Salix viminalis, Helianthus tuberosus, Sida hermaphrodita, Spartina pectinata, Andropogon gerardi and Miscanthus X giganteus were tested in terms of steam gasification reactivity of biomass chars, as well as yields and composition of product gas in steam gasification and lime-enhanced steam gasification in a laboratory scale fixed bed reactor at 650 °, 700 ° and 800 °C.The highest value of reactivity for 50% of carbon conversion, R50, was observed for Sida hermaphrodita, regardless the process temperature.Application of CaO for in-situ CO2 capture in steam gasification of biomass chars resulted in hydrogen content increase at 650 °C to the levels comparable with the ones reached at 800 °C without carbonation reaction. Also hydrogen and total gas yields increased in tests of lime-enhanced gasification.  相似文献   

10.
In the present study, an innovative multigeneration plant for hydrogen and ammonia generation based on solar and biomass power sources is suggested. The proposed integrated system is designed with the integration of different subsystems that enable different useful products such as power and hydrogen to be obtained. Performance evaluation of designed plant is carried out using different techniques. The energetic and exergetic analyses are applied to investigate and model the integrated plant. The plant consists of the parabolic dish collector, biomass gasifier, PEM electrolyzer and hydrogen compressor unit, ammonia reactor and ammonia storage tank unit, Rankine cycle, ORC cycle, ejector cooling unit, dryer unit and hot water production unit. The biomass gasifier unit is operated to convert biomass to synthesis gaseous, and the concentrating solar power plant is utilized to harness the free solar power. In the proposed plant, the electricity is obtained by using the gas, Rankine and ORC turbines. Additionally, the plant generates compressed hydrogen, ammonia, cooling effect and hot water with a PEM electrolyzer and compressed plant, ammonia reactor, ejector process and clean-water heater, respectively. The plant total electrical energy output is calculated as 20,125 kW, while the plant energetic and exergetic effectiveness are 58.76% and 55.64%. Furthermore, the hydrogen and ammonia generation are found to be 0.0855 kg/s and 0.3336 kg/s.  相似文献   

11.
Solar hydrogen production and its development in China   总被引:2,自引:1,他引:1  
Because of the needs of sustainable development of the mankind society and natural environment building a renewable energy system is one of the most critical issues that today's society must address. In the new energy system there is a requirement for a renewable fuel to replace current energy carrier. Hydrogen is an ideal secondary energy. Using solar energy to produce hydrogen in large scale can solve the problems of sustainability, environmental emissions, and energy security and become the focus of the international society in the area of energy science and technology. It has also been set as an important research direction by many international hydrogen programs. The Ministry of Science and Technology of China supported and launched a project of National Basic Research Program of China (973 Program) – the Basic Research of Mass Hydrogen Production using Solar Energy in 2003 for R&D in the areas of solar hydrogen production. The current status of solar hydrogen production research is reviewed and some significant results achieved in the project are reported in this paper. The trends of development and the future research directions in the field of solar hydrogen production in China are also briefly discussed.  相似文献   

12.
Many countries in North Africa and the Middle East are experiencing localized water shortages and are now using desalination technologies with either reverse osmosis (RO) or thermal desalination to overcome part of this shortage. Desalination is performed using electricity, mostly generated from fossil fuels with associated greenhouse gas emissions. Increased fuel prices and concern over climate change are causing a push to shift to alternative sources of energy, such as solar energy, since solar radiation is abundant in this region all year round.  相似文献   

13.
Aggregating and forecasting demand are crucial parts of energy planning. While a large number of energy consumption surveys have been conducted in the past in the rural energy sector of India, the lack of sufficient data and its compilation, coupled with doubt about the quality of data, has made the task extremely difficult. This paper summarizes our recent effort to compile, computerize and analyze data from 638 village energy consumption surveys covering over 39,000 households, carried out by different organisations between 1985 and 1989. The details of the level of information provided in the survey reports, area of survey, land use pattern, asset ownership, etc., of the collated studies are presented. Results based on the analysis of the energy consumption data compiled are then discussed. The national average for rural domestic thermal energy consumption (excluding water and space heating) estimated through this work (629 kcal or 2.63 MJ per capita daily) is much similar to the rural domestic thermal energy requirement assumed in most energy planning exercises in India in the past. The useful thermal energy consumption varies from 325 to 1065 kcal/cap/d (1.36-4.46 MJ/cap/d) in the East Coast Plain and Hills and the Eastern Himalayan Regions, respectively. Reconfirming the predominance of firewood, the data reveals that the contribution of firewood to the domestic thermal energy consumption has remained at about 58% over the last three decades; dungcake and agricultural residues contribute almost equally in the remaining share. At the national level, our estimates indicate that at least 180 million tonnes of firewood, 40 million tonnes of dungcakes and 30 million tonnes of agricultural residues were consumed in the rural sector for meeting the domestic thermal energy requirement in 1991. The paper also compares the estimates with those based on other surveys in India.  相似文献   

14.
Because of the needs of sustainable development of the mankind society and natural environment building a renewable energy system is one of the most critical issues that today's society must address. In the new energy system there is a requirement for a renewable fuel to replace current energy carrier. Hydrogen is an ideal secondary energy. Using solar energy to produce hydrogen in large scale can solve the problems of sustainability, environmental emissions, and energy security and become the focus of the international society in the area of energy science and technology. It has also been set as an important research direction by many international hydrogen programs. The Ministry of Science and Technology of China supported and launched a project of National Basic Research Program of China (973 Program) – the Basic Research of Mass Hydrogen Production using Solar Energy in 2003 for R&D in the areas of solar hydrogen production. The current status of solar hydrogen production research is reviewed and some significant results achieved in the project are reported in this paper. The trends of development and the future research directions in the field of solar hydrogen production in China are also briefly discussed.  相似文献   

15.
Currently, significant academic and industrial activity is focused on sourcing feed stocks from non-food biomass crops for the sustainable production of energy, power and chemical products. Crops identified as suitable for Northern Europe include Miscanthus, switchgrass (Panicum virgatum), reed canary grass (Phalaris arundinacea) and short rotation coppice willow and poplar (Salix and Populus spp.). All of these crops provide biomass that is amenable for conversion by thermochemical processes i.e. those based on heat and pressure. There are concerns that for some processes the conversion efficiency of biomass is poor compared with coal and oil due to comparatively low energy density, high moisture content, and poor storage and handling properties. Many of these parameters can be improved by pre-processing feed stock materials prior to their conversion. We examine the energy crop species that are suitable for Northern Europe; discuss the processes of combustion, gasification and pyrolysis, and explore how differences in chemical composition influence conversion efficiency. Finally, we review biomass upgrading (pelletisation, torrefaction and treatment with sub-critical (hydrothermal upgrading) and with supercritical water).  相似文献   

16.
The objective of this research is to encourage the utilization of industrial solar energy in the Arab world and especially in Jordan, which has a sunny weather for most of the year. From his experiments on the Rankine cycle utilizing solar energy for the period between 1871 and 1884, the scientist John Ericson suggested that international relationships in the future will change to the benefit of those countries having continuous solar energy. Jordan nearly does not have a huge amount of oil, natural gas and uranium fields, but it has a huge amount of solar energy available most of the year. This research is a review of the industrial applications of solar energy and their development, which may be useful for the development of military equipment and for economical purposes. This study also shows that the Jordanian government should encourage research centers to do more serious steps towards the utilization of industrial solar energy.  相似文献   

17.
Three annual plant species, maize, hemp and faba bean were tested for suitability as dedicated biomass crops in Boreal conditions. Biomass yields were 10-15 t ha-1. The crops were analyzed for their composition and tested as raw materials for conversion to methane and to fermentable sugars. The methane yield was 379 ± 16 Ndm3 kg−1 VS−1 from maize, 387 ± 20 Ndm3 kg−1 VS−1 from faba bean and 239 ± 9 Ndm3 kg−1 VS−1 from hemp. Based on the yield per hectare, maize proved to be the most potential raw material source for methane production. Analogous to methane production, maize was the most productive raw material also in standard hydrolysis tests, with a conversion yield of about 80% of the theoretical sugars. Based on the amount of carbohydrates, the highest theoretical yield per hectare was obtained with hemp. However, considering all parameters, including the need for weeding and fertilizers, all three crops studied proved to be attractive options for cultivation in boreal conditions as well as being used as energy crops in boreal climate.  相似文献   

18.
A plan for the management of alternative sources of energy, namely, wind, solar and biomass, available in a typical village of arid area has been formulated and it is found that the energy potential available in the village from mid February to mid September is much more than the energy requirement of the village; and during the remaining period the energy available is about 78.5 per cent of the energy requirement. Appropriate technologies for the effective and efficient use of these energies are earmarked so as to convert the energy potential available into useful energy.  相似文献   

19.
The concept of combining a salinity gradient solar pond with a chimney to produce power in salt affected areas is examined. Firstly the causes of salinity in salt affected areas of northern Victoria, Australia are discussed. Existing salinity mitigation schemes are introduced and the integration of solar ponds with those schemes is discussed. Later it is shown how a solar pond can be combined with a chimney incorporating an air turbine for the production of power. Following the introduction of this concept the preliminary design is presented for a demonstration power plant incorporating a solar pond of area 6 hectares and depth 3 m with a 200 m tall chimney of 10 m diameter. The performance, including output power and efficiency of the proposed plant operating in northern Victoria is analysed and the results are discussed. The paper also discusses the overall advantages of using a solar pond with a chimney for production of power including the use of the large thermal mass of a solar pond as a practical and efficient method of storing collected solar energy.  相似文献   

20.
In this study, we thermodynamically analyze and experimentally investigate a continuous type hybrid photoelectrochemical H2 generation reactor. This system enhances solar spectrum use by employing photocatalysis and PV/T. Additionally, by replacing electron donors with electrodes to drive the photocatalysis, the potential of pollutant emissions are minimized. In this study, the present reactor is tested under electrolysis operation during which the present reactor is investigated under three different inlet mass flow rates (0.25, 0.50, and 0.75 g/s) and four different operating temperatures (20, 40, 60, and 80 °C). Some parametric studies are run by varying the environmental temperature between 0 and 40 °C. In addition, the impact of coating the membrane electrode assembly of the reactor with Cu2O is investigated. The present results show that the highest energy and exergy efficiencies occur at the environmental temperature of 20 °C which is about 60% and 50%, respectively. The Cu2O coated membrane gives a lot higher current readings, meaning that the coating makes the membrane more conductive and increases H2 production by permitting ions at a higher rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号