首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improved fractionation process conditions for wood dissolution with switchable ionic liquids (SILs) were determined. The short time, high temperature (STHT) system was introduced as a selective and efficient way to extract components from lignocellulosic material. A SIL based on monoethanol amine (MEA) and 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) formed via coupling with SO2, was applied as a solvent in a 1:3 weight ratio with water. In essence, selective dissolution of mainly lignin was achieved by means of the aqueous SIL at 160 °C (∼6.1 bar corresponding to the vapor pressure of water) in 2 h and in a pressure vessel, for both hard- and soft-wood. About 95 wt-% of wood lignin was extracted. The dissolved components in the spent SIL were recovered by the addition of an anti-solvent whereupon over 70% of the dissolved components were recovered; the recovered fraction contained 19 wt-% hemicellulose while the rest of the material was in essence lignin. The non-dissolved, fluffy material contained ∼70 wt-% cellulose and ∼20 wt-% hemicellulose – a consistency resembling that of Kraft pulp.  相似文献   

2.
Agricultural residues represent an abundant, readily available, and inexpensive source of renewable lignocellulosic biomass. However, biomass has complex structural formation that binds cellulose and hemicellulose. This necessitates the initial breakdown of the lignocellulosic matrix. Steam explosion pretreatment was performed on barley straw grind to assist in the deconstruction and disaggregation of the matrix, so as to have access to the cellulose and hemicellulose. The following process and material variables were used: temperature (140–180 °C), corresponding saturated pressure (500–1100 kPa), retention time (5–10 min), and mass fraction of water 8–50%. The effect of the pretreatment was assessed through chemical composition analysis. The severity factor Ro, which combines the temperature and time of the hydrolytic process into a single reaction ordinate was determined. To further provide detailed chemical composition of the steam exploded and non-treated biomass, ultimate analysis was performed to quantify the elemental components. Data show that steam explosion resulted in the breakdown of biomass matrix with increase in acid soluble lignin. However, there was a considerable thermal degradation of cellulose and hemicellulose with increase in acid insoluble lignin content. The high degradation of the hemicellulose can be accounted for by its amorphous nature which is easily disrupted by external influences unlike the well-arranged crystalline cellulose. The carbon content of the solid steam exploded product increased at higher temperature and longer residence time, while the hydrogen and oxygen content decreased, and the higher heating value (HHV) increased.  相似文献   

3.
Lignocellulose crops serve as an excellent feedstock for biofuels because of their reduced costs and net carbon emission, and higher energy efficiency. To estimate more suitable lignocellulosic crops, we compared the contents of lignin, cellulose, and hemicellulose in miscanthus, switchgrass, sorghum, and reed (from 14 accessions according to the collection site) in the leaves and stems and expressed these as % content based on dry weight. This study shows that miscanthus, switchgrass, and sorghum are valuable lignocellulosic crops owing to the significantly lower lignin content than that in reed, among both whole crops as well as specific plant parts. Although switchgrass has been reported to possess the highest polysaccharide content among the crops examined; our results showed no difference at a 5% significance level. Our study also showed that Miscanthus sacchariflorus possesses lower lignin and higher polysaccharide content in its leaves and stalks compared to the other Miscanthus species. Furthermore, M. sacchariflorus also showed lower lignin and higher polysaccharide contents than those in switchgrass. It is possible that M. sacchariflorus is a better resource than switchgrass, although these content assays showed no differences at the 5% significance level. M. sacchariflorus plants collected in Hacheonri, Jejudo, Korea (MFJH), contained 14.12% lignin and 64.23% holocellulose, indicating that Korean miscanthus is a competitive bioenergy crop compared to foreign crops such as switchgrass, which is widely used in the United States.  相似文献   

4.
Hydrothermal gasification in subcritical and supercritical water is gaining attention as an attractive option to produce hydrogen from lignocellulosic biomass. However, for process optimization, it is important to understand the fundamental phenomenon involved in hydrothermal gasification of synthetic biomass or biomass model compounds, namely cellulose, hemicellulose and lignin. In this study, the response surface methodology using the Box-Behnken design was applied for the first time to optimize the process parameters during hydrothermal (subcritical and supercritical water) gasification of cellulose. The process parameters investigated include temperature (300–500 °C), reaction time (30–60 min) and feedstock concentration (10–30 wt%). Temperature was found to be the most significant factor that influenced the yields of hydrogen and total gases. Furthermore, negligible interaction was found between lower temperatures and reaction time while the interaction became dominant at higher temperatures. Hydrogen yield remained at about 0.8 mmol/g with an increase in the reaction time from 30 min to 60 min at the temperature range of 300–400 °C. When the temperature was raised to 500 °C, hydrogen yield started to elevate at longer reaction time. Maximum hydrogen yield of 1.95 mmol/g was obtained from supercritical water gasification of cellulose alone at 500 °C with 12.5 wt% feedstock concentration in 60 min. Using these optimal reaction conditions, a comparative evaluation of the gas yields and product distribution of cellulose, hemicellulose (xylose) and lignin was performed. Among the three model compounds, hydrogen yields increased in the order of lignin (0.73 mmol/g) < cellulose (1.95 mmol/g) < xylose (2.26 mmol/g). Based on the gas yields from these model compounds, a possible reaction pathway of model lignocellulosic biomass decomposition in supercritical water was proposed.  相似文献   

5.
In this work, Leucaena leucocephala K366 was characterized chemical and energy terms, and assessed its potential as a lignocellulosic raw material and energetic and industrial crop specie, and its integral fractionation by autohydrolysis by evaluating its calorific value, holocellulose, glucan, xylan, arabinan, lignin and oligomers and monomers contents in autohydrolysis liquor and solid phase. Also, this paper will consider the influence of the temperature and time of autohydrolysis process from L. leucocephala K366 to obtain valuable liquor and a suitable solid phase to produce energy by combustion.Valuable liquor was obtained from the autohydrolysis of L. leucocephala by simultaneously using operating temperatures and times in the medium-high ranges studied, namely: 172-184 °C and 15-30 min. The optimum processing conditions provided an acceptable yield (16-26%), and high xylose and xylo-oligomer contents in the liquor (10.0 and 58.6%, respectively, of the amounts present in the starting raw material when operating at 184 °C for 30 min) in comparison with other raw materials. The arabinan fraction was extracted virtually completely —only 8.3% remained in the solid fraction—, and the acetyl group fraction was recovered in full. In addition, these conditions reduced the glucose content of the liquor to 2.9% of the amount present in the raw material while largely preserving the integrity of cellulose fibers.Klason lignin was scarcely dissolved under the operating conditions of the autohydrolysis process. This increased the calorific value of the solid phase by 9% (under the most drastic operating conditions) with respect to the starting raw material.  相似文献   

6.
The Higher Heating Value (HHV) of 17 wood fuels was correlated with their Klason lignin (L) and extractive contents (Ext). There was a highly significant correlation between higher heating value, Klason lignin and extractive contents. The HHV (MJ/kg) of wood fuels as a function of lignin and extractive contents can be calculated using the following equation: qv,gr,d = 14.3377 + 0.1228 (L) + 0.1353 (Ext).The correlation coefficient (r) was 0.915. The standard error for Klason lignin was 0.017 and to extractive contents of 0.024. The proportion explained by Klason lignin was 56.4% and explained by extractive contents was 43.6%.  相似文献   

7.
Pyrolysis is a promising technique for the recovery of useful gas, tar, and solid products from biomass waste. However, the low tar yields obtained from lignocellulosic biomass are a significant drawback. To enhance tar yields, sugarcane bagasse, which is the most abundant agricultural waste in Fiji, was pretreated at ambient temperature and atmospheric pressure using various sulfuric acid (H2SO4) concentrations. Here, the ether bonds of cellulose, hemicellulose, and lignin were partially hydrolyzed. The pretreated samples were then pyrolyzed at 500 °C, and it was confirmed that H2SO4-pretreatment disrupted the bagasse cell structure, with the thermogravimetry and differential thermogravimetry results confirming that decomposition occurred at lower temperatures after pretreatment. In addition, tar yields were significantly enhanced from 5.6 wt% to 13.4 wt% for the untreated and 3 M H2SO4-pretreated samples respectively. The main components detected in this tar product were levoglucosan, andcellulose-and hemicellulose-derived products, whose proportions were increased following pretreatment. Thus, our work demonstrates that dilute acid pretreatment enhances tar production from sugarcane bagasse due to the production of shorter chain components via the partial hydrolysis of ether bonds.  相似文献   

8.
The efficient use of lignocellulosic biomass resources is of great significance to solve environmental pollution and energy crisis. Therefore, the understanding of the reactivity of lignin, hemicellulose, and cellulose, which are the major components of lignocellulosic biomass, on chemical and hydrogen conversion is necessary. So combined with proton exchange membrane electrolysis cell, using polyoxometalate (POM) as the oxidizing agent and electron stockpile carrier, the cyclic electrolytic hydrogen production and degradation of lignin, hemicellulose, and cellulose have been researched in detail. Among them, lignin degraded the best (96.81%), and the average Faradaic efficiency of the herein system was also the highest (95.93%). These results exhibit high conversion efficiency from electric energy to hydrogen energy. Simultaneously, without harsh conditions, lignin is mainly degraded to vanillin, hemicellulose is mainly converted to ester compounds, and cellulose is mainly converted to alcohol compounds, which provides an experiment basis for future chemical conversion.  相似文献   

9.
Present global soybean production generates about 20 Mt of lignocellulosic by-products that can be converted into bioethanol and other bioprocess molecules. In this work, the chemical composition and the kinetics of diluted acid hydrolysis of soybean hull were investigated. The chemical composition (mass fraction % on a dry basis) of soybean hull showed a content of approximately 40% of cellulose, 26% of xylose, 9% of lignin, and 13% of proteins. Hydrolyses were carried out under different conditions of temperature and acid concentrations following a 22 central composite design (CCD) to evaluate the release of fermentable sugars (glucose, xylose, and arabinose), and toxic compounds (furfural, hydroxymethilfurfural, acetic acid, and soluble lignin). An objective function was defined to estimate the best treatment for high sugar release and low toxic compounds generation. The kinetics of hydrolyses showed that the best condition for recovering sugars were 153 °C and mass fraction of 1.7% H2SO4 for 60 min with a hydrolysis efficiency of 87%. The objective function, considering a non-inhibiting concentration of toxic compounds (<4 g dm−3), was 118 °C and 2.7% H2SO4 (mass fraction) for 40 min with 59% of hydrolysis efficiency concerning the total sugar content of soybean hulls.  相似文献   

10.
In lignocellulose-to-hydrogen bioconversion, reducing the concentration of chemical agents in pretreatment is of great interest. In this study, rice straw (RS) pretreated at reduced NaOH and urea (NU) concentrations was evaluated. Results showed that the composition of RS exhibited excellent pretreatment performance at a reduced concentration of NU. When the concentration of NaOH was decreased to 3 wt% in combination with 6 wt% urea, the lignin was reduced by 59.52% with a cellulose and hemicellulose loss of less than 17%. Moreover, extending the pretreatment time at a low concentration of NU could effectively promote the biodegradability of RS. Upon fermentation by Thermoanaerobacterium thermosaccharolyticum M18 for H2 production, the H2 production increased up to 213.06 mL/g with a substrate treated by 3 wt% NaOH/6 wt% urea at low solid loading for 15 d, which was 16.31% higher than the counterpart subjected to a 7 wt% NaOH/12 wt% urea pretreatment. The present results suggest the NU pretreatment can be carried out at low concentrations to improve the conversion of RS into bio-H2 production.  相似文献   

11.
Treatment of corn (Zea mays L.) cob under mild reaction conditions (60 °C and atmospheric pressure) in 88% formic acid was an effective method for separating cellulose from hemicellulose and lignin components in lignocellulose. Most of the hemicellulose degradation and lignin removal occurred within the first 90 min. After 6 h treatment, the decomposition of hemicellulose and the recovery of lignin were over 85% and 70%, respectively. Multi-level structures of lignin and solid residues were further characterized by FTIR, XRD, TG/DTG, SEM and SEC. Peaks attributable to lignin or hemicellulose disappeared in FTIR spectra, indicating complete removal of these two components. The remaining solid residues had a higher crystalline index. The major pyrolysis temperature of corncob was increased after formic acid treatment; the molecular weight (MW) of cellulose in solid residues was higher than that in intact cobs, whereas the hemicellulose remaining in the pulp had a lower MW than the original. Lignin was extracted in an esterified form designated as formic acid lignin (FAL). FAL had two thermal decomposition temperatures (Td) at 277 °C and 385 °C. The MW of lignin increased following formic acid treatment, which may make it a better starting material for chemical syntheses.  相似文献   

12.
The pretreatment of rice husk by the wet air oxidation (WAO) technique was investigated by means of a statistically designed set of experiments. Reaction temperature, air pressure, and reaction time were the process parameters considered. WAO pretreatment of rice husk increased the cellulose content of the solid fraction by virtue of lignin removal and hemicellulose solubilization. The cellulose recovery was around 92%, while lignin recovery was in the tune of 8–20%, indicating oxidation of a bulk quantity of lignin. The liquid fraction was found to be rich in hexose and pentose sugars, which could be directly utilized as substrate for ethanol fermentation. The WAO process was optimized by multi-objective numerical optimization with the help of MINITAB 14 suite of statistical software, and an optimum WAO condition of 185 °C, 0.5 MPa, and 15 min was predicted and experimentally validated to give 67% (w/w) cellulose content in the solid fraction, along with 89% lignin removal, and 70% hemicellulose solubilization; 13.1 gl?1 glucose and 3.4 gl?1 xylose were detected in the liquid fraction. The high cellulose content and negligible residual lignin in the solid fraction would greatly facilitate subsequent enzymatic hydrolysis, and result in improved ethanol yields from rice husk.  相似文献   

13.
Wei-Hsin Chen  Po-Chih Kuo 《Energy》2011,36(2):803-811
Torrefaction is a thermal pretreatment process for biomass where raw biomass is heated in the temperatures of 200-300 °C under an inert or nitrogen atmosphere. The main constituents contained in biomass include hemicellulose, cellulose and lignin; therefore, the thermal decomposition characteristics of these constituents play a crucial role in determining the performance of torrefaction of lignocellulosic materials. To gain a fundamental insight into biomass torrefaction, five basic constituents, including hemicellulose, cellulose, lignin, xylan and dextran, were individually torrefied in a thermogravimetry. Two pure materials, xylose and glucose, were torrefied as well for comparison. Three torrefaction temperatures of 230, 260 and 290 °C, corresponding to light, mild and severe torrefactions, were taken into account. The experiments suggested the weight losses of the tested samples could be classified into three groups; they consisted of a weakly active reaction, a moderately active reaction and a strongly active reaction, depending on the natures of the tested materials. Co-torrefactions of the blend of hemicellulose, cellulose and lignin at the three torrefaction temperatures were also examined. The weight losses of the blend were very close to those from the linear superposition of the individual samples, suggesting that no synergistic effect from the co-torrefactions was exhibited.  相似文献   

14.
Biomass energy uses organic matter such as wood or plants - lignocellulosic biomass - for creating heat, generating electricity and producing green oil for cars. Modern biomass energy recycles organic leftovers from forestry and agriculture, like corn stovers, rice husks, wood waste and pressed sugar cane, or uses special, fast-growing “energy crops” like willow and switchgrass, as fuel. Biomass is composed of three major components: cellulose, hemicelluloses, and lignin. Their differences in chemical structures lead to different chemical reactivities, making the relative composition in cellulose, hemicelluloses and lignin in the biomass a crucial factor for process design. In this paper thermogravimetric analysis is investigated as a new method to obtain lignin, hemicellulose and ??-cellulose contents in biomass. It is shown that this alternative method lead to comparable results than common methods used for the determination of the ??-cellulose content, with an enhancement of the accuracy in the determination of the hemicellulose content. Unfortunately, this method cannot be adopted for the determination of the lignin amount.  相似文献   

15.
Pretreatments are crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars. In this light, switchgrass was subjected to 13 pretreatments including steam explosion alone (195 °C for 5, 10 and 15 min) and after impregnation with the following catalysts: Ca(OH)2 at low (0.4%) and high (0.7%) concentration; Ca(OH)2 at high concentration and higher temperature (205 °C for 5, 10 and 15 min); H2SO4 (0.2% at 195 °C for 10 min) as reference acid catalyst before steam explosion. Enzymatic hydrolysis was carried out to assess pretreatment efficiency in both solid and liquid fraction. Thereafter, in selected pretreatments the solid fraction was subjected to simultaneous saccharification and fermentation (SSF), while the liquid fraction underwent anaerobic digestion (AD). Lignin removal was lowest (12%) and highest (35%) with steam alone and 0.7% lime, respectively. In general, higher cellulose degradation and lower hemicellulose hydrolysis were observed in this study compared to others, depending on lower biomass hydration during steam explosion. Mild lime addition (0.4% at 195 °C) enhanced ethanol in SSF (+28% than steam alone), while H2SO4 boosted methane in AD (+110%). However, methane represented a lesser component in combined energy yield (ethanol, methane and energy content of residual solid). Mild lime addition was also shown less aggressive and secured more residual solid after SSF, resulting in higher energy yield per unit raw biomass. Decreased water consumption, avoidance of toxic compounds in downstream effluents, and post process recovery of Ca(OH)2 as CaCO3 represent further advantages of pretreatments involving mild lime addition before steam explosion.  相似文献   

16.
Physico-chemical pretreatment of lignocellulosic biomass is critical in removing substrate-specific barriers to cellulolytic enzyme attack. Alkaline pretreatment successfully delignifies biomass by disrupting the ester bonds cross-linking lignin and xylan, resulting in cellulose and hemicellulose enriched fractions. Here we report the use of dilute alkaline (NaOH) pretreatment followed by enzyme saccharifications of wheat straw to produce fermentable sugars. Specifically, we have assessed the impacts of varying pretreatment parameters (temperature, time and alkalinity) on enzymatic digestion of residual solid materials. Following pretreatment, recoverable solids and lignin contents were found to be inversely proportional to the severity of the pretreatment process. Elevating temperature and alkaline strengths maximised hemicellulose and lignin solubilisation and enhanced enzymatic saccharifications. Pretreating wheat straw with 2% NaOH for 30 min at 121 °C improved enzyme saccharification 6.3-fold when compared to control samples. Similarly, a 4.9-fold increase in total sugar yields from samples treated with 2% NaOH at 60 °C for 90min, confirmed the importance of alkali inclusion. A combination of three commercial enzyme preparations (cellulase, ??-glucosidase and xylanase) was found to maximise monomeric sugar release, particularly for substrates with higher xylan contents. In essence, the combined enzyme activities increased total sugar release 1.65-fold and effectively reduced cellulase enzyme loadings 3-fold. Prehydrolysate liquors contained 4-fold more total phenolics compared to enzyme saccharification mixtures. Harsher pretreatment conditions provide saccharified hydrolysates with reduced phenolic content and greater fermentation potential.  相似文献   

17.
Pretreatment methods for the production of fermentable substrates from Miscanthus, a lignocellulosic biomass, were investigated. Results demonstrated an inverse relationship between lignin content and the efficiency of enzymatic hydrolysis of polysaccharides. High delignification values were obtained by the combination of mechanical, i.e. extrusion or milling, and chemical pretreatment (sodium hydroxide). An optimized process consisted of a one-step extrusion-NaOH pretreatment at moderate temperature (70°C). A mass balance of this process in combination with enzymatic hydrolysis showed the following: pretreatment resulted in 77% delignification, a cellulose yield of more than 95% and 44% hydrolysis of hemicellulose. After enzymatic hydrolysis 69% and 38% of the initial cellulose and hemicellulose fraction, respectively, was converted into glucose, xylose and arabinose. Of the initial biomass, 33% was converted into monosaccharides. Normal growth of Thermotoga elfii on hydrolysate was observed and high amounts of hydrogen were produced.  相似文献   

18.
Dilute acid pretreatment (DAP) is commonly employed prior to enzymatic deconstruction of cellulose to increase overall sugar and subsequent ethanol yields from downstream bioconversion processes. Typically optimization of pretreatment is evaluated by determining hemicellulose removal, subsequent reactivity towards enzymatic deconstruction, and recoverable polysaccharide yields. In this study, the affect of DAP on the supramolecular and ultrastructure of lignocellulosic biomass was evaluated. A series of dilute acidic pretreatments, employing ~0.10–0.20 mol/m3 H2SO4 at ~160–180 °C, for varying residence times were conducted on both Populus and switchgrass samples. The untreated and pretreated biomass samples were characterized by carbohydrate and lignin analysis, gel permeation chromatography (GPC) and 13C cross polarization magic angle spinning (CPMAS) NMR spectroscopy. GPC analysis shows a reduction in the molecular weight of cellulose and change in its polydispersity index (PDI) with increasing residence time, indicating that pretreatment is actually degrading the cellulose chains. 13C CPMAS and non-linear line-fitting of the C4 region in the carbon spectrum of the isolated cellulose not only showed that the crystallinity index increases with residence time, but that the lateral fibril dimension (LFD) and lateral fibril aggregate dimension (LFAD) increase as well.  相似文献   

19.
《能源学会志》2019,92(5):1303-1312
Ignition behaviour of biomass is an essential knowledge for plant design and process control of biomass combustion. Understanding of ignition characteristics of its main chemical components, i.e. cellulose, hemicellulose, lignin and their mixtures will allow the further investigation of ignition behaviour of a wider range of biomass feedstock. This paper experimentally investigates the influences of interactions among cellulose, hemicellulose and lignin on the ignition behaviour of biomass by thermogravimetric analysis. Thermal properties of an artificial biomass, consisting of a mixture of the three components will be studied and compared to that of natural biomass in atmospheres of air and nitrogen in terms of their ignition behaviour. The results showed that the identified ignition temperatures of cellulose, hemicellulose and lignin are 410 °C, 370 °C and 405 °C, respectively. It has been found that the influence of their interactions on the ignition behaviour of mixtures is insignificant, indicating that the ignition behaviour of various biomass feedstock could be predicted with high accuracy if the mass fractions of cellulose, hemicellulose and lignin are known. While the deficiencies of the determined mutual interactions would be further improved by the analytical results of the activation energies of cellulose, hemicellulose, lignin, their mixtures as well as natural and artificial biomass in air conditions.  相似文献   

20.
In search to increase the offer of liquid, clean, renewable and sustainable energy in the world energy matrix, the use of lignocellulosic materials (LCMs) for bioethanol production arises as a valuable alternative. The objective of this work was to analyze and compare the performance of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the production of bioethanol from coconut fibre mature (CFM) using different strategies: simultaneous saccharification and fermentation (SSF) and semi-simultaneous saccharification and fermentation (SSSF). The CFM was pretreated by hydrothermal pretreatment catalyzed with sodium hydroxide (HPCSH). The pretreated CFM was characterized by X-ray diffractometry and SEM, and the lignin recovered in the liquid phase by FTIR and TGA. After the HPCSH pretreatment (2.5% (v/v) sodium hydroxide at 180 °C for 30 min), the cellulose content was 56.44%, while the hemicellulose and lignin were reduced 69.04% and 89.13%, respectively. Following pretreatment, the obtained cellulosic fraction was submitted to SSF and SSSF. Pichia stipitis allowed for the highest ethanol yield – 90.18% – in SSSF, 91.17% and 91.03% were obtained with Saccharomyces cerevisiae and Zymomonas mobilis, respectively. It may be concluded that the selection of the most efficient microorganism for the obtention of high bioethanol production yields from cellulose pretreated by HPCSH depends on the operational strategy used and this pretreatment is an interesting alternative for add value of coconut fibre mature compounds (lignin, phenolics) being in accordance with the biorefinery concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号