首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activated carbons (ACs) based on rice straw (RS) were synthesised using potassium carbonate as activating agent at three different K2CO3/RS weight ratios. Morphological, chemical, structural as well as textural characterisations were carried out in order to establish relationships between the physicochemical properties of the materials and their hydrogen adsorption capacities. The ACs contained potassium and silicon as the main impurities. Si was identified by XRD in both phases of silicon dioxide and silicon carbide. The presence of SiC was particularly surprising due to the rather low activation temperature, much lower than what is usually required for SiC synthesis. ACs exhibited well-developed surface areas (approximatively 2000–2100 m2 g?1) and high micropore volumes, making them suitable for hydrogen storage applications. RS-based ACs showed higher hydrogen storage capacities than those previously obtained with KOH-activated sucrose. The latter exhibited hydrogen uptakes (excess, 10 MPa, 298 K) up to 0.55 wt. %, whereas 0.65 wt. % was measured for RS-based ACs in the same conditions. The higher hydrogen capacities and isosteric heats of adsorption found here were attributed to the presence of SiC.  相似文献   

2.
We measured hydrogen storage on five well-known commercial carbon materials (CCMs) and we compared their performances to those obtained on our lab-made activated carbons (ACs). H2 uptake of our lab-made ACs was always higher than that of CCMs of similar SBET, our best AC reached 6 wt.% H2 excess adsorption at 77 K and 4 MPa. We calculated the contribution of four ranges of pores (<0.5 nm; 0.5-0.7 nm, 0.7-2 nm and >2 nm) to the H2 excess adsorption for the 14 carbon materials considered in this study. We clearly demonstrated that: (i) the superiority in H2 excess adsorption of lab-made ACs over the CCMs is related to their pore size distribution; (ii) H2 uptakes higher than 3 wt.% are due to pores with diameter wider than 0.7 nm.  相似文献   

3.
Cu based catalysts were synthesized in water and methanol solvents by chemical reduction with sodium borohydride (NaBH4). The obtained catalyst was used to catalyze the NaBH4 hydrolysis reaction with phosphoric acid (H3PO4) including different concentrations. Surface morphology and structural properties of the Cu based catalysts prepared in water and methanol solvents were studied using by X-ray diffraction (XRD), scanning electron microscopy (SEM), surface area measurements and Fourier-transform infrared spectroscopy (FTIR) analyses, respectively. The catalytic activity of the catalysts has been tested by measuring the hydrogen production rate by the acidified hydrolysis of NaBH4. The maximum hydrogen production rates in the hydrolysis reaction including 0.25 M H3PO4 using the Cu based catalyst prepared in water and methanol solvents were 825 and 660 ml g?1min?1, respectively. At the same time, the hydrogen production experiments were carried out from this hydrolysis reaction with only H3PO4 and NaBH4 interactions without using Cu metal catalyst. The activation energy obtained based on the nth order reaction model was found to be 61.16 kJ mol?1.  相似文献   

4.
Biochar is a potential catalyst for methane decomposition (CMD) owing to its environmental-friendly and application prospects. In this work, the hierarchical porous biochar was prepared by carbonization and H3PO4 activation using Enteromorpha prolifera (EP) as precursor, respectively. The results show that when the ratio of H3PO4/EP is 1.5, the maximum CH4 conversion is 46%, along with hydrogen output of 396 mmol/gcat, which is 5.8 times as that of the unactivated biochar. The characterization results by XPS, Raman, SEM and HRTEM indicate that P element is inserted in carbon layer in the form of C–O–P, resulting in lattice distortion of carbon layer and larger defect density, and C–O–P plays a dominant role in initial CH4 conversion. The mesopores formed by H3PO4 activation alleviate the influence of the deposited carbon on the catalyst and decrease the deactivation rate, thereby exhibiting better performance in CMD.  相似文献   

5.
Cu and Zn modified 13X zeolites prepared by ion exchange or impregnation and activated carbons (ACs) treated with KOH, NaOH or Na2CO3 solutions were studied as H2S sorbents for biogas purification for fuelling molten carbonate fuel cells. H2S sorption was studied in a new experimental set-up equipped with a high sensitivity potentiometric system for the analysis of H2S. Breakthrough curves were obtained at 40 °C with a fixed bed of 20 mg of the samples under a stream (6 L h−1) of 8 ppm H2S/He mixture. The adsorption properties of 13X zeolite improved with addition of Cu or Zn:Cu exchanged zeolite showed the best performances with a breakthrough time of 580 min at 0.5 ppm H2S, that is 12 times longer than the parent zeolite. In general, unmodified and modified ACs were more effective H2S sorbents than zeolites. Treating ACs with NaOH, KOH, or Na2CO3 solutions improved the H2S adsorption properties: AC treated with Na2CO3 was the most effective sorbent, showing a breakthrough time of 1222 min at 0.5 ppm, that is twice the time of the parent AC.  相似文献   

6.
Metal-free catalysts (C–KOH–P) containing phosphorus (P) and oxygen (O) prepared by the modification with phosphoric acid (H3PO4) of activated carbon (C–KOH) obtained by activation of Chlorella Vulgaris microalgae with potassium hydroxide (KOH) were investigated for the hydrogen (H2) generation reaction from methanolysis of sodium borohydride (NaBH4). Elemental analysis, XRD, FTIR, ICP-MS, and nitrogen adsorption were used to analyze the characteristics of metal-free catalysts. The results showed that groups containing O and P were attached to the carbon sample. In the study, the hydrogen production rates (HGR) obtained with metal-free C–KOH and C–KOH–P catalysts were 3250 and 10,263 mL/min/g, respectively. These HGR values are better than most values obtained for many catalysts presented in the literature. Besides, relatively low activation energy (Ea) of 27.9 kJ/mol was obtained for this metal-free catalyst. The C–KOH–P metal-free catalyst showed ideal reusability with 100% conversion and a partial reduction in the H2 production studies of NaBH4 methanolysis after five consecutive uses.  相似文献   

7.
In this study, the effect of concentration of phosphoric acid (H3PO4) towards the physicochemical properties of rice husk derived graphene (GRHA) in the absence of inert gas was investigated. From TGA analysis, it was found that GRHA 1:3 possessed the highest weight loss (24.66%) due to the highest reactivity towards H3PO4. The FTIR shows that graphene-like material was obtained as the –OH groups were vanished in GRHA structure after activation. Raman spectroscopy and XRD analysis indicated that the produced GRHA is in amorphous state and has few layers of graphene. GRHA 1:3 showed the greatest improvement in their porous structure including the highest surface area (315.07 m2/g) with the largest pore volume (0.2069 cm3/g) as compared to other samples. From the static adsorption test, it was confirmed that GRHA 1:3 stored the highest amount of hydrogen compared to other samples with 1.95 wt % contributed by its excellent porosity and surface area. To further understand the kinetics of hydrogen adsorption on GRHA, pseudo-first model and pseudo-second model was plotted. Pseudo second model was the best fitted model which indicated that the gas molecule adsorbed in the GRHA material via chemisorption. Additionally, from the kinetic study it was found that the adsorption process of GRHA 1:3 was controlled by multi-step adsorption process.  相似文献   

8.
We prepared activated carbons (ACs) that are among the best adsorbents for hydrogen storage. These ACs were prepared from anthracites and have surface areas (SBET) as high as 2772 m2 g−1. Anthracites activated with KOH presented the highest adsorption capacities with a maximum of 5.3 wt.% at 77 K and 4 MPa. Non-linearity between hydrogen uptake at 77 K and pore texture was confirmed, as soon as their SBET exceeded the theoretical limiting value of (geometrical) surface area, i.e., SBET > 2630 m2 g−1. We separated adsorption and compression contributions to total hydrogen storage. The amount of hydrogen stored is significantly increased by adsorption only at moderate pressure: 3 MPa and 0.15 MPa at 298 and 77 K, respectively. Hydrogen adsorption on ACs at high pressure, above 30 MPa at 298 K and 8 MPa at 77 K, has not interest because more gas can be stored by simply compression in the same tank volume.  相似文献   

9.
In this study, montmorillonite (MMT) clay was modified with different acids to be used as support material. The modified MMT clay was used to obtain hydrogen in the hydrolysis reactions of NaBH4 (NaBH4-HR) as a support material for the Co–B and Co–Fe–B catalyst. During the activation of MMT clay, the effects of different acids, phosphoric acid (H3PO4) concentration, and impregnation time with H3PO4 were investigated. During the hydrogen generation from the NaBH4-HR, effects of Co loading, Fe loading, NaBH4 concentration, temperature and, catalyst durability were investigated. The maximum HGRs for MMT-H3PO4–CoB and MMT-H3PO4–Co–Fe–B treated with 5 M H3PO4 for 7 days were 1869 and 4536 mL/min/gcatalyst, respectively. The activation energies for MMT-H3PO4–CoB and MMT-H3PO4–Co–Fe–B catalyst samples were 49.5 and 38.90 kJ/mol.  相似文献   

10.
Spirulina platensis is defined as the dried biomass of cyanobacteria in commercial use and is biomass with high carbon content. Spirulina platensis microalgae strain supported-CoB catalysts to produce hydrogen from sodium borohydride (NaBH4) were prepared for the first time. The Spirulina platensis microalgae strain was modified with phosphoric acid (H3PO4) to proton. Then, the supported catalyst was performed to produce hydrogen from NaBH4 hydrolysis. The optimum H3PO4 concentration, optimum Co amount, and optimum impregnation time of the H3PO4 with the microalgae strain were investigated. The maximum hydrogen production rate for the 30% CoB catalyst supported on microalgae strain treated with H3PO4 was found to be 3940 mL min−1g−1catalyst. X-ray powder diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), and scanning electron microscope (SEM) analysis were performed for characterization of CoB catalyst supported on Spirulina microalgae strain. After four consecutive uses, the performance and conversion values of this catalyst were investigated. At the same time, the effect of temperature on the hydrogen production from this hydrolysis reaction was examined. The activation energy with the CoB catalyst supported on Spirulina microalgae strain was calculated as 35.25 kJ mol−1. According to the kinetic model of a power law, n value was found as 0.25 for kinetic studies.  相似文献   

11.
The sodium borohydride(NaBH4) semi-methanolysis and semi-ethanolysis reactions to produce hydrogen are investigated using phosphoric acid(H3PO4) for the first time. The NaBH4 concentration, H3PO4 concentration, and temperature parameters on these semi-alcoholysis reactions are evaluated. The normalized hydrogen generation rates (HGRs) obtained from the NaBH4 semi-methanolysis and semi-ethanolysis acidified using 0.5 M H3PO4 are 11684 and 9981 ml min−1 g−1, respectively. Moreover, the completion times of these semi-methanolysis and semi-ethanolysis reactions with 0.5 M H3PO4 acid concentration are 0.10 and 0.116 min, respectively. Kinetic studies with the power-law model are evaluated. The activation energies(Ea) obtained for the NaBH4 semi-methanolysis and semi-ethanolysis using 0.5 M H3PO4 are 9.08 and 32.47 kJ mol−1, respectively.  相似文献   

12.
Metal-free catalyst based on Spirulina platensis microalgae (SPM) is protonated by phosphoric acid (H3PO4) treatment (SPM-H3PO4). The microalgae sample is then exposed to heating with different temperatures including 200, 300, and 400 °C (SPM-H3PO4-H). The modified microalgae sample based on Spirulina platensis as a catalyst is directly used to generate hydrogen via the methanolysis of sodium borohydride (MSB). The activation temperature, activation time, NaBH4 concentration, catalyst amounts, temperature and reusability tests were carried out. The maximum hydrogen production rates (HGR) obtained for SPM-H3PO4-H at temperatures of 30 °C and 60 °C were 3975 and 9600 mLmin−1gcat−1, respectively. At the same time, the activation energy(Ea) of 17.78 kJ mol−1 was obtained. Reusability experiments were performed for this microalgae-based metal-free catalyst. XRD, SEM, FTIR, BET, and TEM analyzes were performed for characterization of these metal-free catalyst samples.  相似文献   

13.
《Journal of power sources》2005,144(1):302-309
Four kinds of activated carbons (denoted as ACs) with specific surface area of ca. 1050 m2 g−1 were fabricated from fir wood and pistachio shell by means of steam activation or chemical activation with KOH. Pore structures of ACs were characterized by a t-plot method based on N2 adsorption isotherms. The amount of mesopores within KOH-activated carbons ranged from 9.2 to 15.3% while 33.3–49.5% of mesopores were obtained for the steam-activated carbons. The pore structure, surface functional groups, and raw materials of ACs, as well as pH and the supporting electrolyte were also found to be significant factors determining the capacitive characteristics of ACs. The excellent capacitive characteristics in both acidic and neutral media and the weak dependence of the specific capacitance on the scan rate of cyclic voltammetry (CV) for the ACs derived from the pistachio shell with steam activation (denoted as P-H2O-AC) revealed their promising potential in the application of supercapacitors. The ACs derived from fir wood with KOH activation (denoted as F-KOH-AC), on the other hand, showed the best capacitive performance in H2SO4 due to excellent reversibility and high specific capacitance (180 F g−1 measured at 10 mV s−1), which is obviously larger than 100 F g−1 (a typical value of activated carbons with specific surface areas equal to/above 1000 m2 g−1).  相似文献   

14.
Poly(arylene ether ketone) containing pendant quaternary ammonium groups (QPAEKs) are anion-conducting polymers synthesized from benzylmethyl-containing poly(arylene ether ketone)s (PAEK-TM). Then QPAEK membranes doped with different concentrations of H3PO4 are prepared and evaluated as high temperature proton exchange membranes. The H3PO4 doping ability of quaternary ammonium groups in QPAEK system is found to be stronger than that of imidazole groups in polybenzimidazole system. The doping level of resulting QPAEK/H3PO4 composite membranes increases with both the concentration level of soaking H3PO4 solution and the ion exchange capacity. For example, the highest doping level of composite membranes is 28.6, which is derived from QPAEK-5 with an ion exchange capacity of 2.02 mmol g−1 saturated with concentrated phosphoric acid. A strong correlation between the doping level and the proton conductivity is observed for all the membranes. Besides their low cost, novel high temperature proton exchange membranes, QPAEK/H3PO4, show really high proton conductivity and possess excellent thermal and mechanical stability, suggesting a bright future for applications in high temperature fuel cell.  相似文献   

15.
This paper reports comparatively the capacities of two activated carbons (ACs) and MOF-5 for storing gases. It analyzes, using similar equipments and experimental procedures, the density used to convert gravimetric data to volumetric ones, measuring the density (tap and packing at different pressures). It presents data on porosity, surface area and gas storage (H2, CH4 and CO2) obtained under different temperatures (77 K and RT) and pressures (0.1, 4 and 20 MPa). MOF-5 presents lower volume of narrow micropores than both ACs, making its storage at RT lower, independently of the gas used (H2, CH4 and CO2) and the basis of reporting data (gravimetric or volumetric). For H2 at 77 K the reliability of the results depends too much on the density used. It is shown that the outstanding volumetric performance of MOF-5, in relation to ACs, is due to the use of an unrealistic high density (crystal density) that, not including the adsorbent inter-particle space, gives an apparently high volumetric gas storage capacity. When a density measured similarly in both types of adsorbents is used (e.g. tap or packing densities) MOF-5 presents, for all gases and conditions studied, lower adsorption capacities on volumetric basis and storage capacities than ACs.  相似文献   

16.
Activated carbons (ACs) are of good potential to be the catalysts for methane decomposition to produce hydrogen without CO and CO2. Coal liquefaction residue (CLR) seems to be a promising precursor for ACs. In this work, several types of ACs were prepared by KOH activation from Shenhua CLR with addition of SiO2 or SBA-15. The catalytic activity and stability for methane decomposition were investigated and compared with commercial coal-based AC and carbon black (BP2000). The results show that the prepared ACs have larger surface area, narrower pore distribution, and higher catalytic activity than those directly prepared by KOH activation, and are superior to the commercial carbons. The increased microporosity resulting from the soluble salts formed by the reaction between the additive and KOH is responsible for the high catalytic activity.  相似文献   

17.
A novel phosphoric acid doped Nafion–polybenzimidazole (H3PO4/Nafion–PBI) composite membrane was prepared and the H2/O2 single cell durability was tested at 150 °C without humidification. The durability was improved 55% compared with that of phosphoric acid doped polybenzimidazole (H3PO4/PBI). During the durability test, the hydrogen permeability of the membrane and the internal resistance of the single cell were detected using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS), respectively. Before and after the durability test, the mechanical strength of the membranes was measured by stress–strain tests. The results of characterization indicated that the enhanced durability of the membrane attributed to the improved mechanical strength, which benefited from the presence of Nafion in the Nafion and PBI matrix. The preliminary results suggested that the novel H3PO4/Nafion–PBI composite membrane is a good candidate in high temperature PEMFC for achieving longer cell lifetime.  相似文献   

18.
In this study, orange peel (OP), one of the organic wastes, was first used as a metal-free catalyst for the production of hydrogen from sodium boron hydride (NaBH4). In order to prepare an orange peel catalyst (OP–H3PO4-Cat) with the best catalytic activity, experiments were carried out on pure orange peel with different acid types, different burning temperatures and different burning times. As a result of these experiments, it was determined that OP-H3PO4-Cat treated with 30% H3PO4 and burned at 400 °C for 45 min had the best catalytic activity. The OP-H3PO4-Cat material was characterised by several techniques such as FTIR, XRD and SEM. As a result, the hydrogen generation rates (HGR) at 30 °C and 60 °C in the methanolysis reaction of 2.5% NaBH4 catalysed by OP-H3PO4-Cat were found as 45,244 and 61,892 mLmin?1g.cat?1, respectively. The activation energy of OP-H3PO4-Cat catalyst was calculated as 12.47 kJmol-1.  相似文献   

19.
Novel proton-conducting polymer electrolyte membranes have been prepared from bacterial cellulose by incorporation of phosphoric acid (H3PO4/BC) and phytic acid (PA/BC). H3PO4 and PA were doped by immersing the BC membranes directly in the aqueous solution of H3PO4 and PA, respectively. Characterizations by FTIR, TG, TS and AC conductivity measurements were carried out on the membrane electrolytes consisting of different H3PO4 or PA doping level. The ionic conductivity showed a sensitive variation with the concentration of the acid in the doping solution through the changes in the contents of acid and water in the membranes. Maximum conductivities up to 0.08 S cm−1 at 20 °C and 0.11 S cm−1 at 80 °C were obtained for BC membranes doped from H3PO4 concentration of 6.0 mol L−1 and, 0.05 S cm−1 at 20 °C and 0.09 S cm −1 at 60 °C were obtained for BC membranes doped from PA concentration of 1.6 mol L−1. These types of proton-conducting membranes share not only the good mechanical properties but also the thermal stability. The temperature dependences of the conductivity follows the Arrhenius relationship at a temperature range from 20 to 80 °C and, the apparent activation energies (Ea) for proton conduction were found to be 4.02 kJ mol−1 for H3PO4/BC membrane and 11.29 kJ mol−1 for PA/BC membrane, respectively. In particular, the membrane electrode assembly fabricated with H3PO4/BC and PA/BC membranes reached the initial power densities of 17.9 mW cm−2 and 23.0 mW cm−2, which are much higher than those reported in literature in a real H2/O2 fuel cell at 25 °C.  相似文献   

20.
For the first time, phosphoric acid (H3PO4) and acetic acid (CH3COOH) catalysts were used for efficient hydrogen (H2) production from sodium borohydride (NaBH4) ethylene glycolysis reaction. In this experimental study, the effects of ethylene glycol/water ratio, ethylene glycol/acid ratio, NaBH4 concentration, acid concentration, and temperature were investigated. These ethylene glycol/water ratio experiments showed that the use of water alongside ethylene glycol negatively affects H2 production. The hydrogen generation rate (HGR) values obtained for this ethylene glycolysis reaction with 1 M H3PO4 and 1 M CH3COOH catalysts are 5800 and 4542 mLmin-1, respectively. Also, the completion times of ethylene glycolysis reactions with these acids are 8 and 10 s, respectively. The n value obtained for ethylene glycolysis reactions according to the power-law kinetic model was 0.50. The activation energies obtained with H3PO4 and CH3COOH catalysts were 24.45 kJ mol?1and 33.23 kJ mol?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号