首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Yu Wang  Kai Wu  Yu Sun 《能源学会志》2018,91(1):153-162
Biomass feedstocks need to be milled or chopped into particles before briquetting, and the particle size has great effects on the energy consumption and product quality. In this study, the effects of the particle size on the rice straw briquetting process were investigated. The raw materials were milled or chopped into four different sized test materials. Experiments were carried out with an electronic universal testing machine and a self-designed single pellet unit on the basis of a simplex-centroid design. Several parameters, including briquetting time, energy consumption, maximum extrusion force, product compressive strength, and product density, were tested and recorded. The experimental data were processed by the methods of regression analysis and variance analysis. Finally, effects of raw material particle size on the briquetting process, energy consumption, maximum extrusion force, product compressive strength, and product density were obtained. Results showed that, compared with simple sized materials, mixed materials achieved lower energy consumption, higher product compressive strength, and higher product density.  相似文献   

2.
Using biodiesel as a blending component in diesel engine has demonstrated to reduce hydrocarbon and particulate matter emissions. Literature showed that biodiesel type, engine architecture and test conditions deeply affect performance and emission characteristics. Among suitable biodiesel fuels, waste cooking oil (WCO) is considered very attractive due to the reduced environmental impact without sacrificing engine performance.This paper aims at investigating how mixing ratio of biodiesel from WCO and mineral diesel affects the particle size distributions of a current state of art small displacement diesel engine.Experimental tests have been performed on an up-to date light common rail diesel engine. Its complete operative field has been investigated. The results obtained show that the use of biodiesel blends from WCO reduces the total number of particles emitted from the engine with respect to the diesel fuel; the reduction is more evident as the percentage of biodiesel in the blend increases. The number of particles in WCO biodiesel soot with diameter smaller than 10 nm is reduced as compared to diesel fuel; the same trend is observed for diameters larger than 200 nm; comparable particle numbers were obtained in the ultrafine range (Dp < 100 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号