首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fixed-bed slow pyrolysis experiments have been conducted on a sample of safflower seed to determine particularly the effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rate on the pyrolysis product yields and their chemical compositions. The maximum oil yield of 44% was obtained at the final pyrolysis temperature of 500°C, particle size range of +0.425–1.25 mm, with heating rate of 5°C min−1 and sweep gas (N2) flow rate of 100 cm3 min−1 in a fixed-bed lab-scale reactor. Chromatographic and spectroscopic studies on the pyrolytic oil showed that the oil obtained from safflower seed can be used as a renewable fuel and chemical feedstock with a calorific value of 41.0 MJ/kg and empirical formula of CH1.92O0.11N0.02.  相似文献   

2.
This paper reports on the steam reforming, in continuous regime, of the aqueous fraction of bio-oil obtained by flash pyrolysis of lignocellulosic biomass (sawdust). The reaction system is provided with two steps in series: i) thermal step at 200 °C, for the pyrolytic lignin retention, and ii) reforming in-line of the treated bio-oil in a fluidized bed reactor, in the range 600–800 °C, with space-time between 0.10 and 0.45 gcatalyst h (gbio-oil)−1. The benefits of incorporating La2O3 to the Ni/α-Al2O3 catalyst on the kinetic behavior (bio-oil conversion, yield and selectivity of hydrogen) and deactivation were determined. The significant role of temperature in gasifying coke precursors was also analyzed. Complete conversion of bio-oil is achieved with the Ni/La2O3-αAl2O3 catalyst, at 700 °C and space-time of 0.22 gcatalyst h (gbio-oil)−1. The catalyst deactivation is low and the hydrogen yield and selectivity achieved are 96% and 70%, respectively.  相似文献   

3.
Agriculture residues such as palm shell are one of the biomass categories that can be utilized for conversion to bio-oil by using pyrolysis process. Palm shells were pyrolyzed in a fluidized-bed reactor at 400, 500, 600, 700 and 800 °C with N2 as carrier gas at flow rate 1, 2, 3, 4 and 5 L/min. The objective of the present work is to determine the effects of temperature, flow rate of N2, particle size and reaction time on the optimization of production of renewable bio-oil from palm shell. According to this study the maximum yield of bio-oil (47.3 wt%) can be obtained, working at the medium level for the operation temperature (500 °C) and 2 L/min of N2 flow rate at 60 min reaction time. Temperature is the most important factor, having a significant positive effect on yield product of bio-oil. The oil was characterized by Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) techniques.  相似文献   

4.
《能源学会志》2020,93(5):2033-2043
The present study deals with the optimization of process parameters and thermocatalytic pyrolysis of Cascabela thevetia (CT) seeds in a semi-batch cylindrical-shaped reactor. Response surface methodology (RSM) was employed for the optimization of process variables, while commercial catalysts CaO and Al2O3 were used for catalytic pyrolysis. From results, it was concluded that 525 °C temperature, 75 °C min−1 heating rate, and 75 mL min−1 flow of nitrogen yielded maximum pyrolytic liquid (45.26 wt%) while with the attendance of catalysts at 20 wt% increased the yield of pyrolytic liquid (49.12 wt% and 46.87 wt% for CaO and Al2O3 respectively). Optimization outcomes displayed that linear and quadratic terms of utilized factors were more noteworthy while interaction effects between the factors were not significant. Further, characterization of pyrolytic oil established that utilization of catalysts expressively enhanced its properties by reducing viscosity and boosted the calorific value. FTIR examination of pyrolytic oil showed that the attendance of phenols, ethers, alcohols, ketones, alkanes, acids, etc., while 1H NMR results supported the FTIR results. GC-MS analysis showed a substantial reduction of phenols and oxygen-rich products and boost the development of alcohol and aldehydes in pyrolytic oil with the introduction of catalysts. These parameters indicate improved properties of pyrolytic oil, which intensified its bioenergy capabilities.  相似文献   

5.
Slow, fast and flash pyrolysis of rapeseed   总被引:3,自引:0,他引:3  
Pyrolysis experiments have been conducted on a sample of rapeseed to determine particularly the effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rate on the pyrolysis product yields and their chemical compositions. The maximum oil yield of 73% was obtained at the final pyrolysis temperature of 550–600 °C, particle size range of +0.6–1.25 mm, and sweep gas flow rate of 100 cm3min−1 (N2) at flash pyrolysis conditions in tubular transport reactor. Chromatographic and spectroscopic studies on the pyrolytic oil showed that the oil obtained from rapeseed can be used as a renewable fuel and chemical feedstock.  相似文献   

6.
Cotton seed, as a biomass source, is pyrolysed in a tubular fixed-bed reactor under various sweeping gas (N2) flow rates at different pyrolysis temperatures. In the non-catalytic work, the maximum bio-oil yield was attained as 48.30% at 550 °C with a sweeping gas flow rate of 200 mL min−1. At the optimum conditions, catalytic pyrolysis of biomass samples was performed with various amounts of MgO catalyst (5, 10, 15, and 20 wt.% of raw material). Catalyst addition decreased the quantity of bio-oil yet increased the quality of bio-oil in terms of calorific value, hydrocarbon distribution and removal of oxygenated groups. It was observed that increasing the amount of catalyst used, decreased the oil yields while increased the gas and char yields. Bio-oils obtained at the optimum conditions were separated into aliphatic, aromatic and polar sub-fractions. After the application of column chromatography, bio-oils were subjected into elemental, FT-IR and 1H NMR analyses. Aliphatic sub-fractions of bio-oils were analyzed by GC–MS. It was deduced that the fuel obtained via catalytic pyrolysis mainly consisted of lower weight hydrocarbons in the diesel range. Finally, obtained results were compared with petroleum fractions and evaluated as a potential source for liquid fuels.  相似文献   

7.
We demonstrated an auto-thermal reforming process for producing hydrogen from biomass pyrolysis liquids. Using a noble metal catalyst (0.5% Pt/Al2O3 from BASF) at a methane-equivalent space velocity of around 2000 h−1, a reformer temperature of 800 °C–850 °C, a steam-to-carbon ratio of 2.8–4.0, and an oxygen-to-carbon ratio of 0.9–1.1, we produced 9–11 g of hydrogen per 100 g of fast pyrolysis bio-oil, which corresponds to 70%–83% of the stoichiometric potential. The elemental composition of bio-oil and the bio-oil carbon-to-gas conversion, which ranged from 70% to 89%, had the most significant impact on the yield of hydrogen. Because of incomplete volatility the remaining 11%–30% of bio-oil carbon formed deposits in the evaporator. Assuming the same process efficiency as that in the laboratory unit, the cost of hydrogen production in a 1500 kg/day plant was estimated at $4.26/kg with the feedstock, fast pyrolysis bio-oil, contributing 56.3% of the production cost.  相似文献   

8.
The feasibility of the steam reforming of bio-oil aqueous fraction and bio-ethanol mixtures has been studied in a continuous process with two in-line steps: thermal step at 300 °C (for the controlled deposition of pyrolytic lignin during the heating of the bio-oil/bio-ethanol feed) followed by steam reforming in a fluidized bed reactor on a Ni/α-Al2O3 catalyst. The effect of bio-ethanol content in the feed has been analyzed in both the thermal and reforming steps, and the suitable range of operating conditions (temperature and space-time) has been determined for obtaining a high and steady hydrogen yield. Higher ethanol content in the mixture feed improves the reaction indices and reduces coke deposition. Operating conditions of 700 °C and space-times higher than 0.23 gcatalyst h (gbio-oil+EtOH)−1 are suitable for attaining almost fully conversion of oxygenates (bio-oil and ethanol) and hydrogen yields above 93%, with low catalyst deactivation.  相似文献   

9.
In this work palm shell waste was pyrolyzed to produces bio-oil. The effects of several parameters on the pyrolysis efficiency were tested to identify the optimal bio-oil production conditions. The tested parameters include temperature, N2 flow rate, feed-stock particle size, and reaction time. The experiments were conducted using a fix-bed reactor. The efficient response surface methodology (RSM), with a central composite design (CCD), were used for modeling and optimization the process parameters. The results showed that the second-order polynomial equation explains adequately the non-linear nature of the modeled response. An R2 value of 0.9337 indicates a sufficient adjustment of the model with the experimental data. The optimal conditions found to be at the temperature of 500 °C, N2 flow rate of 2 L/min, particle size of 2 mm and reaction time of 60 min and yield of bio-oil was approximately obtained 46.4 wt %. In addition, Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) were used to characterize the gained bio-oil under the optimum condition.  相似文献   

10.
Hydrogen production via catalytic steam reforming of maize stalk fast pyrolysis bio-oil over the nickel/alumina supported catalysts promoted with cerium was studied using a laboratory scale fixed bed coupled with Fourier transform infrared spectroscopy/thermal conductivity detection analysis (FTIR/TCD). The effects of nickel loading, reaction temperature, water to carbon molar ratio (WCMR) and bio-oil weight hourly space velocity (WbHSV) on hydrogen production were investigated. The highest hydrogen yield of 71.4% was obtained over the 14.9%Ni-2.0%Ce/A12O3 catalyst under the reforming conditions of temperature = 900 °C, WCMR = 6 and WbHSV = 12 h−1. Increasing reaction temperature from 600 to 900 °C resulted in the significant increase of hydrogen yield. The hydrogen yield was significantly enhanced by increasing the WCMR from 1 to 3, whereas it increased slightly by further increasing WCMR. The hydrogen yield decreased with the increase of WbHSV. Meanwhile, the coke deposition percentage changed little with increasing WbHSV up to 12 h−1 and then it increased by 4.5% with the further increase of WbHSV from 12 to 24 h−1.  相似文献   

11.
The slow pyrolysis of biomass in the form of pine wood was investigated in a static batch reactor at pyrolysis temperatures from 300 to 720°C and heating rates from 5 to 80 K min−1. The compositions and properties of the derived gases, pyrolytic oils and solid char were determined in relation to pyrolysis temperatures and heating rates. In addition, the wood and the major components of the wood—cellulose, hemicellulose and lignin—were pyrolysed in a thermogravimetric analyser (TGA) under the same experimental conditions as in the static batch reactor. The static batch reactor results showed that as the pyrolysis temperature was increased, the percentage mass of solid char decreased, while gas and oil products increased. There was a small effect of heating rate on product yield. The lower temperature regime of decomposition of wood showed that mainly H2O, CO2 and CO were evolved and at the higher temperature regime, the main decomposition products were oil, H2O, H2, hydrocarbon gases and lower concentrations of CO and CO2. Fourier transformation infra-red spectroscopy and elemental analysis of the oils showed they were highly oxygenated. The TGA results for wood showed two main regimes of weight loss, the lower temperature regime could be correlated with the decomposition of hemicellulose and the initial stages of cellulose decomposition whilst the upper temperature regime correlated mainly with the later stages of cellulose decomposition. Lignin thermal decomposition occurred throughout the temperature range of pyrolysis.  相似文献   

12.
In this paper we report the solution combustion synthesis of cobalt oxide nanofoam from solutions of cobalt nitrate and glycine and subsequent use as an effective catalyst precursor for NaBH4 hydrolysis. The catalytic activity results show that the hydrogen generation rate (HGR) at room temperature was much higher for the solution combustion synthesized material than for commercial Co3O4 nanopowder, though their specific surface areas were comparable (∼26–32 m2/g). Using a 0.6 wt.% aqueous solution of NaBH4 at 20 °C and a 5 wt.% catalyst precursor loading, a HGR of 1.93 L min−1 gcat−1 was achieved for solution combustion synthesized Co3O4. In contrast, at the same conditions, for commercial Co3O4 and elemental Co powders HGRs of 0.98 and 0.49 L min−1 gcat−1 were achieved respectively. This type of synthesis is amenable to many complex metal oxide catalysts as well, such as LiCoO2, which have also been shown to be good catalyst precursors for hydrolysis of NaBH4.  相似文献   

13.
Partially oxidized titanium carbonitride (TiCNO), newly synthesized from partial oxidation of TiC0.5N0.5 powder under a flow rate of 500 cm3 min−1 of nitrogen containing 4% H2 and 0.5% O2 by volume at 800 °C for 20 h, is examined as a non-platinum cathode for polymer electrolyte membrane fuel cells (PEMFCs). TiCNO shows significantly enhanced electrocatalytic activity for the oxygen reduction reaction (ORR) compared with as-prepared TiC0.5N0.5 and fully oxidized TiO2. In addition, TiCNO has a high chemical stability in 0.1 mol dm−3 sulfuric acid at 30 °C.  相似文献   

14.
Bio-oil has been produced from palm kernel shell in a fluidized bed reactor. The process conditions were optimized and the detailed characteristics of bio-oil were carried out. The higher feeding rate and higher gas flow rate attributed to higher bio-oil yield. The maximum mass fraction of biomass (57%) converted to bio-oil at 550 °C when 2 L min−1 of gas and 10 g min−1 of biomass were fed. The bio-oil produced up to 500 °C existed in two distinct phases, while it formed one homogeneous phase when it was produced above 500 °C. The higher heating value of bio-oil produced at 550 °C was found to be 23.48 MJ kg−1. As GC–MS data shows, the area ratio of phenol is the maximum among the area ratio of identified compounds in 550 °C bio-oil. The UV–Fluorescence absorption, which is the indication of aromatic content, is also the highest in 550 °C bio-oil.  相似文献   

15.
The objective of this work is to study the effect of various Co–B catalyst synthesis conditions on the catalyst surface morphology and kinetic parameters. The Co–B catalyst was synthesized on IR-120/TP-207 resin surface by using ion exchange and chemical reduction method using NaBH4 as a reduction agent. The reduction conditions which were investigated here were: reduction temperature, NaBH4 concentration, pH value, NaBH4 adding flowrate and different types of resins. The result shows reduction temperature gives the most dramatic effect on surface morphology which is caused by competing reactions of reduction and hydrolysis. Low reduction temperature resulted in a slower Co–B reduction rate and made the catalyst surface denser with a branched structure. This created more surface area than higher reduction temperatures. Low reduction temperature catalyst had the better performance on NaBH4 hydrolysis reaction for hydrogen generation rate. The optimal reduction temperature of the Co–B/IR-120 is 25 °C. The L-H model was used to regress kinetic parameters from the experiment data. The frequency factor, activation energy and adsorption constant are 1.17 × 109 mol gcat−1 min−1, 70.65 kJ mol−1, and 6.8 L mol−1 at 40 °C, respectively. Finally, the TP-207 resin was used instead of IR-120. After scanning for all catalyst synthesis conditions, the Co–B/TP-207 had the higher catalyst loading, faster hydrogen generation rate and more stable than Co–B/IR-120.  相似文献   

16.
The effective implementation of biomass gasification has to overcome some difficulties such as the minimization of tars. On the other hand, with a proper design of experimental conditions, biomass gasification can be directed towards the production of hydrogen. The aim of the present study was to investigate the use of dolomite as catalyst to improve tar removal and hydrogen production by a two-stage steam gasification process, using olive cake as raw material. Fixing the olive cake gasification conditions on the first reactor (900 °C, steam flow rate of 190 mg min−1, O2 flow rate of 7.5 cm3 min−1), the cracking of tars was prompted by: a) steam gasification (steam flow rate in the range 40-190 mg min−1) at 1000 °C, b) catalytic gasification, using dolomite (5% wt.). It was found that increasing steam flow rate up to 110 mg min−1 involves an increase in hydrogen fraction due to the enhancement of water gas and water gas shift reactions. Also, the influence of dolomite was studied at 800 and 900 °C in a second reactor, finding better results at 800 °C, which gave an hydrogen fraction of 0.51.  相似文献   

17.
Co-doped BaCe0.85Tb0.05Co0.1O3−δ (BCTCo) nanopowder was synthesized via a sol–gel method using ethylenediaminetetraacetic acid (EDTA) and citric acid as the chelating agents. Using the resultant powder, BCTCo perovskite hollow fibre membranes were then fabricated by the combined phase inversion and sintering technique. Properties of the BCTCo powder and the hollow fibre membranes in terms of crystalline phase, morphology, electrical conductivity, porosity, mechanical strength and hydrogen/oxygen permeation were investigated by a variety of characterization methods. The results indicated that doping of cobalt in the BCTb oxide led to a higher electrical conductivity and lower calcination temperature for the powder precursor to a perovskite structure as well as sintering temperature for the hollow fibre precursors to gastight membranes. In order to obtain gastight and robust hollow fibre membranes, the sintering temperature should be controlled between 1300 and 1450 °C. The maximum hydrogen flux through the BCTCo hollow fibre membranes reached up to 0.385 mL cm−2 min−1 at 1000 °C under 50% H2–He/N2 gradient, which is higher than that of the un-doped BCTb hollow fibre membranes with the same effective thickness, and especially much higher than that obtained from other proton conductors due to the asymmetric structure of the membrane designed. Moreover, the BCTCo hollow fibre membrane also exhibited noticeable oxygen permeation fluxes, i.e. 0.122 mL cm−2 min−1 at 1000 °C under the air/He gradient. However, doping of cobalt might damage the mechanical stability of the perovskite membranes in the hydrogen-containing atmosphere.  相似文献   

18.
Spherical shape Cu–Sn alloy powders with fine size for lithium secondary battery were directly prepared by spray pyrolysis. The mean size and geometric standard deviation of the Cu–Sn alloy powders prepared at a temperature of 1100 °C were 0.8 μm and 1.2, respectively. The powders prepared at a temperature of 1100 °C with low flow rate of carrier gas as 5 l min−1 had main XRD peaks of Cu6Sn5 alloy and copper-rich Cu3Sn alloy phases. Cu and Sn components were well dispersed inside the submicron-sized alloy powders. The discharge capacities of the Cu6Sn5 alloy powders prepared at a flow rate of 5 l min−1 dropped from 485 to 313 mAh g−1 by the 20th cycle at a current density of 0.1 C. On the other hand, the discharge capacities of the Cu–Sn alloy powder prepared at a flow rate of 20 l min−1 dropped from 498 to 169 mAh g−1 by the 20th cycle at a current density of 0.1 C.  相似文献   

19.
A novel temperature shift strategy has been proposed to overcome an inhibition on hydrogen fermentation of beverage industry wastewater (BW) due to the accumulation of propionic acid (HPr) during continuous reactor operation. The continuous performance at constant pH 5.5, temperature 37 °C and hydraulic retention time (HRT) 8 h with BW concentration of 20 g/Lhexose-equivalent in a stirred tank reactor (2 L) showed an accumulation of HPr to 2.36 g/L leading to a drop in hydrogen production rate (HPR) from 10 to 8.5 L L−1 d−1. To overcome the HPr inhibition, a temperature shift (from 37 °C) to 45 °C for 8 h was applied. This significantly improved the inhibited HPR and HY to 13.6 L L−1 d−1 and 1.68 mol-H2 mol−1 hexose, respectively, with a simultaneous reduction in the HPr concentration to 0.7 g/L. Microbial community analysis based on PCR-DGGE after temperature shift revealed the non-dominance of Selenomonas lacticifex and Bifidobacterium catenulatum (involved in HPr formation), and dominance of hydrogen producing bacteria namely Clostridium butyricum, Clostridium perfringenes, Clostridium acetobutylicum, and Ethanoligenens harbinense. This study demonstrated that temperature shift strategy could overcome the HPr inhibition and significantly improve the hydrogen fermentation of an industrial wastewater.  相似文献   

20.
《能源学会志》2020,93(1):303-311
Pyrolysis of Ulva prolifera macroalgae (UM), an aquatic biomass, was carried out in a fixed-bed reactor in the presence of three zeolites based catalysts (ZSM-5, Y-Zeolite and Mordenite) with the different catalyst to biomass ratio. A comparison between non-catalytic and catalytic behavior of ZSM-5, Y-Zeolite and Mordenite catalyst in the conversion of UM showed that is affected by properties of zeolites. Bio-oil yield was increased in the presence of Y-Zeolite while decreased with ZSM-5 and Mordenite catalyst. Maximum bio-oil yield for non-catalytic pyrolysis was (38.5 wt%) and with Y-Zeolite catalyst (41.3 wt%) was obtained at 400 °C respectively. All catalyst showed a higher gas yield. The higher gas yield might be attributed to that catalytic pyrolysis did the secondary cracking of pyrolytic volatiles and promoted the larger small molecules. The chemical components and functional groups present in the pyrolytic bio-oils are identified by GC–MS, FT-IR, 1H-NMR and elemental analysis techniques. Phenol observed very less percentage in the case of non-catalytic pyrolysis bio-oil (9.9%), whereas catalytic pyrolysis bio-oil showed a higher percentage (16.1%). The higher amount of oxygen present in raw biomass reduced significantly when used catalyst due to the oxygen reacts with carbon and produce (CO and CO2) and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号