首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Room temperature electron spin resonance spectra of epoxy resins loaded with various concentrations of multiwalled carbon nanotubes of various lengths are analyzed. The resonance spectrum near the free electron line position is dominated by a single almost symmetric line assigned to delocalized electrons residing on multiwalled carbon nanotubes. The experimental research shown that: (1) The dependence of the g-factor on nanotubes length is controlled by the distortions of multiwalled carbon nanotubes. (2) The dependence of the g-factor on the concentration of multi-walled nanotubes reflects the interactions between electrons localized on different nanotubes. In insulating composites, the resonance line width broadens as the length and the concentration of multiwalled carbon nanotubes is increased. (3) For conducting composites, the dependence of the electron spin resonance line width on the length and concentration of multiwalled carbon nanotubes is controlled by Elliott contribution and exchange interactions, respectively. (4) The concentration of conduction electrons increases as the length and the concentration of multiwalled carbon nanotubes are increased.  相似文献   

2.
The influence of the incorporation of boron in diamond-like carbon (DLC) films on the microstructure of the coatings has been investigated. The boron-containing DLC films (a-C:B) have been deposited by pulsed laser deposition (PLD) at room temperature in high vacuum conditions, by ablating graphite and boron targets either with a femtosecond pulsed laser (800 nm, 150 fs, fs-DLC) or with a nanosecond pulsed laser (248 nm, 20 ns, ns-DLC). Alternative ablation of the graphite and boron targets has been carried out to deposit the a-C:B films. The film structure and composition have been highlighted by coupling Field Emission Scanning Electron Microscopy, Electron Energy Loss Spectroscopy and High Resolution Transmission Electron Microscopy. Using the B K-edge, EELS characterization reveals the boron effect on the carbon bonding. Moreover, the plasmon energy reveals a tendency of graphitization associated to the boron doping. Pure boron particles have been characterized by HRTEM and reveal that those particles are amorphous or crystallized. The nanostructures of the boron-doped ns-DLC and the boron-doped fs-DLC are thus compared. In particular, the incorporation of boron in the DLC matrix is highlighted, depending on the laser used for deposition. Electrical measurements show that some of these films have potentialities to be used in low temperature thermometry, considering their conductivity and temperature coefficient of resistance (TCR) estimated within the temperature range 160-300 K.  相似文献   

3.
The effects of KrF excimer laser irradiation (248 nm) on aqueous suspensions of multiwalled carbon nanotubes (MWCNTs) were experimentally examined. MWCNTs and sodium dodecyl sulfate were added to deionized water at a mass fraction of 0.5 %, and the suspension was ultrasonicated for 30 min. Transmission electron microscopy (TEM) images of the nanotube samples after laser irradiation indicated fractures and network disentanglement. The laser fluence affected the thermal conductivity and viscosity of the suspensions beyond a threshold of 50 mJ · cm−2. As the irradiation time progressed at a laser fluence of 144 mJ · cm−2, the thermal conductivity and viscosity decreased until they reached saturation. The thermal-conductivity enhancement decreased from 16 % to 5 %, and the low shear viscosity decreased dramatically to 1/200 the shear viscosity of the non-irradiated sample. Raman spectra and TEM images showed that the defects in the nanotubes increased upon laser irradiation. In conclusion, excimer laser irradiation of a suspension of MWCNTs provided an effective way to tune the heat transfer and rheological characteristics of suspensions.  相似文献   

4.
Nanoparticle fluid suspensions were prepared using photochemically functionalized multiwalled carbon nanotubes in polar base fluids. Multiwalled carbon nanotubes prepared by catalytic chemical vapour deposition technique have been functionalized by irradiating with ultraviolet light of wavelength 254 nm. The photochemical oxidation of multiwalled carbon nanotubes under UV irradiation introduces oxygen containing functional groups onto the surface of the nanotubes, generating new defects on their structure. Silver nanoparticles have been deposited over multiwalled carbon nanotubes by chemical method. The enhancement in thermal conductivity of the prepared nanofluids using functionalized multiwalled carbon nanotubes and Ag nanoparticles deposited functionalized multiwalled carbon nanotubes with volume fraction, temperature and aspect ratio has been demonstrated. Silver deposited functionalized multiwalled carbon nanotubes based nanofluids in DI water with 0.02% volume fraction exhibit a thermal conductivity enhancement of 9.9% and 47% at room temperature and at 50 degrees C respectively.  相似文献   

5.
We demonstrate synthesis, electrical and magnetic characterization of silicon carbo-nitride (SiCN) coated multiwalled carbon nanotubes in a core-shell structure. The core formed by a carbon nanotube had a diameter in the range of 10-100 nm. The shell was synthesized by pyrolysis of an SiCN precursor on the surface of carbon nanotubes. Electrical resistivity of an individual composite nanotube was measured to be ~ 2.55 × 103 Ω cm. The magnetic measurements performed by a superconducting quantum interference device on the composite nanotubes in the temperature range of 5-300 K show a reduced coercive field with increasing temperatures. The monolayer thick coating of an ultra high temperature multifunctional ceramic SiCN makes these composite nanotubes very promising for sensing applications in harsh environments.  相似文献   

6.
Multiwalled carbon nanotubes (MWCNTs) were successfully coated and filled with Sn using a simple method. Bulk thermal conductivity of Sn/SnO filled and coated multiwalled carbon nanotubes (MWCNTs) of ~1 mm thickness pellet by laser method reveals surge in hybrid carbon nanotubes in comparison to pristine nanotubes. The thermal diffusivity and thermal conductivity of hybrid nanotubes are increased to 4.41 mm2/sec, 5.39 Wm?1K?1 of as compared to 0.36 mm2/sec and 0.28 Wm?1K?1 of the pristine nanotubes. The enhancement in thermal conductivity is attributed to the presence of Sn coating on surface and inside the carbon nanotubes and the formation of compact structures by reducing the air gaps between nanotubes because of their joining during compression and sintering.  相似文献   

7.
The boron-containing hard-type (HT) carbons were prepared by heating the raw coke compacts with 1.6 wt% boron at temperatures ranging from 1000 to 2800° C. Some physical and mechanical properties of boron-doped HT carbons have been measured and compared with those for boron-free materials. It was confirmed that the boron enters the HT carbon at a relatively low temperature of 1400° C and enhances the densification process of compacts during heat-treatment above 1800° C. The addition of boron caused increases in Young's modulus and thermal conductivity, and decreases in hardness and electrical conductivity of HT carbons. The effects are discussed, and compared with those for graphitizable carbons.  相似文献   

8.
In contrast to standard metallic or semiconducting graphitic carbon nanotubes, for years their structural analogs, boron nitride nanotubes, in which alternating boron and nitrogen atoms substitute for carbon atoms in a graphitic network, have been considered to be truly electrically insulating due to a wide band gap of layered BN. Alternatively, here, we show that under in situ elastic bending deformation at room temperature inside a 300 kV high-resolution transmission electron microscope, a normally electrically insulating multiwalled BN nanotube may surprisingly transform to a semiconductor. The semiconducting parameters of bent multiwalled BN nanotubes squeezed between two approaching gold contacts inside the pole piece of the microscope have been retrieved based on the experimentally recorded I-V curves. In addition, the first experimental signs suggestive of piezoelectric behavior in deformed BN nanotubes have been observed.  相似文献   

9.
We report recent work on electrical properties of multiwalled carbon nanotubes (MWNTs)/alumina composites. The composites with different contents of MWNTs were consolidated by spark plasma sintering and their temperature dependence dc conductivity was scrutinized in the temperature range from 5 to 300 K. The analysis of the temperature dependence of the conductivity suggests that for temperatures higher than 50 K, conduction can be ascribed to thermal fluctuation induced tunneling of the charge carriers through insulating barriers between MWNTs, while at temperatures below 50 K, the conduction can be attributed to three dimensional variable range hopping through MWNTs network in the alumina matrix. The frequency dependence of the conductivity was studied from 5 to 1.3 × 107 Hz. The universality of the ac conduction in MWNT/alumina composites was examined by construction of master curve.  相似文献   

10.
Abstract

We study boron-doped carbon nanotubes by first-principles methods based on the density functional theory. To discuss the possibility of superconductivity, we calculate the electronic band structure and the density of states (DOS) of boron-doped (10,0) nanotubes by changing the boron density. It is found that the Fermi level density of states D(?F) increases upon lowering the boron density. This can be understood in terms of the rigid band picture where the one-dimensional van Hove singularity lies at the edge of the valence band in the DOS of the pristine nanotube. The effect of three-dimensionality is also considered by performing the calculations for bundled (10,0) nanotubes and boron-doped double-walled carbon nanotubes (10,0)@(19,0). From the calculation of the bundled nanotubes, it is found that interwall dispersion is sufficiently large to broaden the peaks of the van Hove singularity in the DOS. Thus, to achieve the high D(?F) using the bundle of nanotubes with single chirality, we should take into account the distance from each nanotube. In the case of double-walled carbon nanotubes, we find that the holes introduced to the inner tube by boron doping spread also on the outer tube, while the band structure of each tube remains almost unchanged.  相似文献   

11.
Poly(trimethylene terephthalate) (PTT)/multiwalled carbon nanotube (MWCNT) composites have been fabricated to evaluate the potential of PTT composites as electromagnetic interference (EMI) shielding material. The room temperature electrical conductivity, complex permittivity, and shielding effectiveness (SE) of PTT/MWCNT composites were studied in the frequency range of 8.2–12.4 GHz (X-band). The dc conductivity (σ) of composites increased with increasing MWCNT loading and a typical percolation behavior was observed at 0.48 vol% MWCNT loading. The highest EMI SE of PTT/MWCNT composites was ~23 decibel (dB) at 4.76 vol% MWCNT loading which suggest that these composites can be used as light weight EMI shielding materials. The correlation among the SE, complex permittivity, and electrical conductivity was also studied. The EMI shielding mechanism of PTT/MWCNT composites was studied by resolving the total EMI SE into absorption and reflection loss.  相似文献   

12.
S Seelan 《Vacuum》2004,75(2):105-109
Vacuum annealing of a mixture of amorphous carbon and cobalt nanoparticles supported on microporous zeolite at high-temperature results in the formation of multiwalled carbon nanotubes which are essentially filled with metal nanoparticles or nanowires as observed by transmission electron microscopy. The electronic properties of nanotubes by variable temperature ESR techniques shows that g values show little change with temperature from 77 to 327 K but the line width (ΔHpp) of the ESR signal for nanotubes synthesized from amorphous carbon increases from 7.9 G at 77 K to 9.5 G at 327 K.  相似文献   

13.
Dense borosilicate glass matrix composites containing up to 3 wt% of multiwalled carbon nanotubes were produced by a sol–gel process. The three different silicate precursors employed (tetramethylsilane (TMOS), methyltriethoxysilane (MTES) and methyltrimethoxysilane (MTMS)) yielded transparent xerogels which were subsequently crushed and densified by hot pressing at 800 °C. The dispersion of the carbon nanotubes was aided by using an organic–inorganic binder (3-aminopropyl triethoxysilane) which limited flocculation of the CNTs in the silica sol. After densification, the borosilicate glass composites containing up to 2 wt% CNTs showed significant improvements in hardness and compression strength, as well as thermal conductivity, whilst percolation effects lead to a dramatic increase in electrical conductivity above 1 wt%. This simple approach to disperse CNTs into a technical silicate glass matrix via the sol–gel process focusses specifically on the borosilicate system, but the procedure can be applied to produce other inorganic matrix composites containing CNTs.  相似文献   

14.
Mechanical properties of pressureless sintered 0.15–1.2 vol.% multiwalled carbon nanotube reinforced alumina matrix nanocomposites have been analyzed using the 2-parameter Weibull statistics. Electron microscopy and phase analysis of nanocomposites sintered at 1700 °C for 2 h in Argon revealed existence of interpenetrating network of nanotubes in alumina, formation of thin interface resembling stoichiometric aluminum monoxycarbide and matrix grain refinement by nanotubes. Statistical analyses indicated that with increasing Vickers hardness testing load (4.9–19.6 N) and flexural strength measurement temperature (room temperature to 1100 °C), Weibull modulus of nanocomposites increased significantly suggesting improved consistency at higher load and temperature. The highest Weibull moduli were obtained for nanocomposites containing either 0.15 or 0.3 vol.% nanotube which were ∼40% and ∼15% higher than single phase alumina for hardness and strength, respectively, supporting the specimen size effect on reliability of present brittle ceramic matrix nanocomposites. Superior mechanical reliability of nanocomposites over pure alumina was primarily attributed to the presence of structurally intact nanotubes forming effective interface region to ensure proper load sharing, matrix grain refinement, and especially, at higher testing load and temperature, overall averaging effect of flaws to yield higher Weibull moduli.  相似文献   

15.
Superconducting boron-doped diamond samples were synthesized with isotopes of 10B, 11B, 13C and 12C. We claim the presence of a carbon isotope effect on the superconducting transition temperature, which supports the ‘diamond-carbon’-related nature of superconductivity and the importance of the electron–phonon interaction as the mechanism of superconductivity in diamond. Isotope substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond to the vibrations of carbon atoms. The 500 cm−1 Raman band shifts with either carbon or boron isotope substitution and may be associated with vibrations of paired or clustered boron. The absence of a superconducting transition (down to 1.6 K) in diamonds synthesized in the Co–C–B system at 1900 K correlates with the small boron concentration deduced from lattice parameters.  相似文献   

16.
Silica coated multiwalled carbon nanotubes (SiO2@MWCNTs) with different coating thicknesses of ∼4 nm, 30–50 nm, and 70–90 nm were synthesized by a sol–gel method and compounded with polyurethane (PU). The effects of SiO2@MWCNTs on the electrical properties and thermal conductivity of the resulting PU/SiO2@MWCNT composites were investigated. The SiO2 coating maintained the high electrical resistivity of pure PU. Meanwhile, incorporating 0.5, 0.75 and 1.0 wt% SiO2@MWCNT (70–90 nm) into PU, produced thermal conductivity values of 0.287, 0.289 and 0.310 W/mK, respectively, representing increases of 62.1%, 63.3% and 75.1%. The thermal conductivity of PU/SiO2@MWCNT composites was also increased by increasing the thickness of the SiO2 coating.  相似文献   

17.
We have produced nanocomposite films consisting of modified multiwalled carbon nanotubes (MWCNTs) and a polymer (MWCNT/polymer weight ratio of 95/5). The nanocomposite has been applied to a paper substrate by an oriented spinning process from a liquid phase. The resistivity of the films has been measured as a function of temperature in the range 20–140°C along and across the preferential orientation direction of the nanotubes in the nanocomposite. The results point to an irreversible transition from semiconducting to metallic behavior of the conductivity of the films.  相似文献   

18.
The synthesis and impregnation of porous titania films by commercial multiwalled carbon nanotubes and nanotube rich carbon soot are reported. The samples were dried under terrestrial gravity g and in a centrifuge accelerated at 13 g. X-Ray Diffraction data and Scanning Electron Microscopy images indicated differences in the crystal structure and tendency to agglomeration in both carbon types, providing different microstructures of functionally graded electrodes. Drying the samples in a centrifuge helps to the distribution of carbon nanoparticles and to the decrement of the impedance at the contact interfaces. The presence of titania weakens the differences observed in both drying protocols, but not the differences due to the carbon source. Superior capacitance and network conductivity were observed in electrodes based on commercial carbon nanotubes.  相似文献   

19.
Numerous investigators have reported on pulsed laser deposition of carbon nanotubes, mostly using the Nd:YAG laser for ablation. In all cases the depositions have been conducted at high-temperatures and high pressures. Here we report on the deposition of carbon nanostructures at room temperature using a 248 nm excimer laser nm to ablate mixed graphite-nickel/cobalt targets. We find that the formation of the carbon nanomaterials is dependent on the particular ambient gas employed. In O2 gas, carbon nanotubes and nano-onions are produced. The nanotubes have notably large channel diameters of 100-200 nm and the nano-onion structures are 100-200 nm in diameter, also much larger than previously observed. High-resolution, in-situ, time-resolved emission spectroscopy has been used to follow the production of molecular carbon species such as C2 and C3, as well as metals such as Ni or Co in the different ambients employed. Spectral modeling reveals significant differences in the vibrational-rotational temperatures of C2 spectra in O2 versus Ar. Mechanistic details of the formation of carbon nanotubes and nano-onions, and in-situ optical emission spectroscopy are described.  相似文献   

20.
Chitosan–multiwalled carbon nanotubes/hydroxyapatite nanocomposites were synthesized by a novel in situ precipitation method. The electrostatic adsorption between multiwalled carbon nanotubes and chitosan was investigated and explained by Fourier transform infrared spectroscopy analysis. Morphology studies showed that uniform distribution of hydroxyapatite particles and multiwalled carbon nanotubes in the polymer matrix was observed. In chitosan–multiwalled carbon nanotubes/hydroxyapatite nanocomposites, the diameters of multiwalled carbon nanotubes were about 10 nm. The mechanical properties of the composites were evaluated by measuring their compressive strength and elastic modulus. The elastic modulus and compressive strength increased sharply from 509.9 to 1089.1 MPa and from 33.2 to 105.5 MPa with an increase of multiwalled carbon/chitosan weight ratios from 0 to 5 %, respectively. Finally, the cell biocompatibility of the composites was tested in vitro, which showed that they have good biocompatibility. These results suggest that the chitosan–multiwalled carbon nanotubes/hydroxyapatite nanocomposites are promising biomaterials for bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号