首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用电子束物理气相沉积(EB-PVD)技术制备了金属(NiCoCrAl)/陶瓷(Y2O3-ZrO2)微叠层材料,并对其微观结构和力学性能进行了分析.结果表明,金属层和陶瓷层间界面较为平直、清晰.金属层由γ-Ni相构成,层中晶粒为较大的等轴晶.陶瓷层由c-ZrO2和t-ZrO2两相组成,层中晶粒为较小的柱状晶.在金属层的顶部,存在一些均匀分布的微孔.这种材料在室温拉伸试验中表现出无宏观塑性变形的脆性断裂特征.断口分析表明,金属层起到了阻碍裂纹扩展的作用,且层界面存在脱粘的现象.  相似文献   

2.
利用X-射线衍射、扫描电子显微镜和透射电子显微镜对Cf/ZrC-ZrB2-SiC-C超高温陶瓷复合材料的相组成、纤维/热解碳层的界面特征和超高温陶瓷基体的显微结构特征进行了表征。在碳纤维表面有一层厚度为2~3μm石墨化程度较高的热解碳界面层,该界面层可以避免采用PIP工艺制备超高温陶瓷基体时可能对碳纤维造成的损伤。热解碳层与碳纤维之间为弱机械结合,其界面间分布着20~30nm的ZrC纳米颗粒。Cf/ZrC—ZrB2-SiC—C超高温陶瓷复合材料基体主要由ZrC,ZrB2,SiC和石墨相(Cg)组成。基体中石墨的(002)面沿着ZrC,ZrB2或SiC的表面生长。在石墨与ZrB2和石墨与SiC的界面没有观察到取向关系,界面处既没有反应层也没有非晶相存在。在石墨与ZrC之间存在ZrC(111)//Cg(002),ZrC[110]//Cr[010]的取向关系。ZrB,和SiC之间也没有界面反应和非晶层存在。  相似文献   

3.
EB-PVD热障涂层高温氧化过程中的显微结构和相分析   总被引:5,自引:1,他引:5  
采用磁控溅射方法在镍基单晶高温合金基体上沉积NiCrAlY粘结层,电子束物理气相沉积方法(EB-PVD)沉积陶瓷层(7mass%Y2O3-ZrO2)。用X-射线衍射(XRD)、扫描电镜(SEM)等研究了EB-PVD热障涂层热循环过程中的相变,同时观察了样品的形貌变化。结果表明,EB-PVD方法沉积的陶瓷层,其柱状晶粒簇拥成团,表面比较致密,然而晶粒簇间存在间隙,允许柱状晶横向伸缩,使基体能在相对大的范围内自由膨胀。经高温氧化后,陶瓷层表面变得疏松,柱状晶粒簇间距增大,随着热循环的继续进行,相邻较大的间隙互相连接而形成微裂纹,并逐渐横向及纵向扩展,循环氧化比恒温氧化更易于产生显微裂纹。1050℃热循环过程中,ZrO2正方相的c/a轴比值逐渐增加,Y2O3含量逐渐减少,非平衡正方相逐渐分解成平衡正方相和立方相。循环300次后,观察到少量从平衡正方相转变而来的单斜相。  相似文献   

4.
单晶高温合金热障涂层的循环氧化行为   总被引:3,自引:0,他引:3  
在Ni基单晶高温合金基体上,采用磁控溅射沉积Ni30Cr12Al0.3Y粘结层,电子束物理气相沉积(EB-PVD)氧化锆陶瓷面层,制备了热障涂层。粘结层的晶粒尺寸小于100nm,为纳米结构,具有优异的抗氧化性能;陶瓷面层为柱状结构,有较好的应变允许度。XRD分析表明,沉积态的陶瓷层存在大量的非平衡正方相(t′),还有少量的立方相(c)和单斜相(m),t′相在冷却时不会转变为m,对陶瓷的高温稳定性有重要的作用。在1050℃下,对单晶合金基体和热障涂层进行了循环氧化实验。结果表明,单晶合金经过几次循环后氧化膜发生剥落,100次循环氧化后,表面氧化物主要由NiO和少量的Al2O3以及由于Kirkendell效应造成的孔洞组成;而热障涂层经过100次循环后,表面没有剥落,但有微裂纹出现,粘结层与陶瓷层之间的热氧化产物(TGO)为Al2O3。300次循环氧化后,TGO与粘结层之间有裂纹产生。  相似文献   

5.
利用SiC与碳基材料复合,采用原位合成技术制备了一种新型碳陶瓷复合材料。采用XRD和SEM技术分别表征材料的相组成和微观形貌结构,并利用万能材料试验机测试了复合材料的抗压和抗折性能。XRD测试结果表明,SiC改性碳陶瓷复合材料中没有新相产生。由SEM照片分析可知,SiC的掺杂破坏了石墨原有的层片状结构,并在碳石墨材料中观察到颗粒状晶体,随着SiC掺量的增加,散乱分布的晶粒有聚集长大的趋势,造成碳陶瓷复合材料结构的进一步破坏。力学性能测试结果表明,当掺入10%SIC(质量分数)时,材料的抗折强度最大,为58.8MPa;而在SiC掺量为5%(质量分数),其抗压强度达到最大,为157.4MPa。  相似文献   

6.
利用分析电子显微镜(AEM)研究了磁控溅射法+真空热压方法制备的SiC纤维增强Ti-22Al—23Nb-2Ta(原子分数,%)合金复合材料的界面微结构.该复合材料的纤维/合金界面由细晶粒的TiC+TiSi层、等轴晶TiC层和(Al,Ti)Nb2相层组成.界面的形成主要是基体合金中的Ti元素与SiC纤维表面的C涂层直接反应生成TiC;同时导致在次层形成贫Ti层和贫Ti层中Nb元素富集,以致形成(Al,Ti)Nb2相.  相似文献   

7.
Ti(C,N)基金属陶瓷的相界面过渡层   总被引:17,自引:0,他引:17  
熊惟皓  胡镇华  崔崑 《金属学报》1996,32(10):1075-1080
对Ti(C,N)基金属陶瓷的相界面过渡层进行了系统的研究.实验结果表明:金属陶瓷中Ti(C,N)硬质相周边存在明显的包覆层组织,它是一种过渡相;Ti(C,N)/Ni相界面没有固定的取向关系;W,Mo元素主要富集于相界面,且Ti,Ni,W,Mo元素在相界面具有成分梯度高分辨电镜观察发现,相界面过渡层厚约8-10nm并由纳米晶组成.这种过渡层是金属陶瓷的一种比较理想的相界面结构.  相似文献   

8.
氧化铝基复合陶瓷-金属钎焊界面的热应力   总被引:3,自引:0,他引:3       下载免费PDF全文
用Ag-Cu-Ti钎料钎焊SiCw/Al2O3复合陶瓷和金属时,陶瓷与钎料发生化学反应,在陶瓷表面形成由TiO、TiC等物相组成的反应层。采用有限元法,对SiCw/Al2O3复合陶瓷/反应层界面的热应力进行了计算。结果表明,复合陶瓷/反应层界面的残余应力变化急剧,最大拉应力位于晶须、基体和反应层交界处;晶须内部及其表面存在较高的双向压应力,Al2O3基体主要承受垂直于界面的拉应力;SiC晶须/反应层界面及其附近的反应产物TiC内具有较高的平行于界面的拉应力,当连接界面承受剪力作用时,SiC晶须/反应层界面和TiC处极易破坏。借助TEM和SEM观察了复合陶瓷/反应层界面区的精细结构和剪切断口形貌,并利用计算结果对观察到的现象进行了分析。  相似文献   

9.
纳米陶瓷材料弹性模量的尺度效应   总被引:3,自引:0,他引:3  
针对纳米陶瓷的界面现象,在三相模型基础上,考虑纳米晶粒与界面相的相互作用,将其改进为复合材料刚度预报的四相模型法,根据有效自恰方法推导出纳米晶粒与界面相内的有效应力,进而得到柔度增量的隐性表达式,再利用相互作用直推法,得到纳米陶瓷材料的柔度增量的显性形式,它具有:1)简单的解析形式;2)适合任何形状的纳米晶粒;3)适合各向同性和各向异性纳米晶粒;4)将复合材料的弹性性能与纳米晶粒尺寸联系起来。结果表明:当纳米晶粒尺寸小于50nm时,纳米陶瓷材料的弹性模量随纳米晶粒尺寸的减小而下降,当纳米晶粒尺寸超过50nm以后,纳米陶瓷材料的弹性模量基本保持不变。  相似文献   

10.
原位合成TiC-M7C3陶瓷硬质相显微组织的分析   总被引:1,自引:1,他引:0       下载免费PDF全文
采用等离子弧堆焊技术原位合成TiC-M7C3陶瓷硬质相,探讨堆焊层中TiC-M7C3硬质相对堆焊层耐磨性的影响.利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析仪(EDS)、洛氏硬度计及湿砂磨损试验机等设备进行检测分析.结果表明,堆焊层是由高碳马氏体基体和大量弥散分布在基体中的TiC,M7C3陶瓷硬质相构成的过共晶组织;堆焊层表面的洛氏硬度为66.4 HRC,磨损量为0.086 g.TiC可以作为M7C3陶瓷硬质相的形核核心,提高了M7C3陶瓷硬质相的形核率,促使其晶粒细化;在TiC和M7C3陶瓷硬质相的共同作用下,Fe-Cr-Ti-C系合金比相同Cr元素含量的Fe-Cr-C系合金堆焊层的硬度更高,抗磨损性能更好.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号