首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The XY-friction pendulum (XY-FP) bearing is a modified friction pendulum that consists of two perpendicular steel rails with opposing concave surfaces and a connector. The connector resists tensile forces, allows independent sliding in the two orthogonal directions and enables small relative rotation of the rails about a vertical axis. Theoretical analyses were undertaken to study applications of XY-FP bearings to bridges. Two of the key features of the XY-FP bearing for the seismic isolation of bridges are: (1) resistance to tensile axial loads and (2) opportunity to provide a different period of isolation in each principal direction of the isolated structure. Numerical analyses on an XY-FP isolated bridge with different isolation periods in the principal directions subjected to near-field ground motions demonstrated the effectiveness of XY-FP bearings. Furthermore, numerical analyses that investigated the sensitivity of XY-FP isolation system response to differences in the coefficients of friction of the bearings demonstrated that bounding analysis using upper and lower estimates of the coefficients of friction will generally provide conservative estimates of displacements and shear forces for isolation systems with nonuniform isolator properties.  相似文献   

2.
The seismic response of bridges isolated by elastomeric bearings and the sliding system is investigated under two horizontal components of real earthquake ground motions. The selected bridges consist of multispan continuous deck supported on the piers and abutments. Three different mathematical models of the isolated bridge are considered for the analytical seismic response by considering and ignoring the flexibility of the deck and piers. The mathematical formulation for seismic response analysis of various mathematical models of the bridges isolated by different isolation systems is presented. The accuracy and computational efficiency of various mathematical models of isolated bridges is investigated by comparing their responses under different system parameters and earthquake ground motions. The important parameters selected are the flexibility of deck, piers, and isolation systems. There was significant difference in the computational time required for different models, but it was observed that the seismic response of the bridges obtained from different equivalent mathematical models is quite comparable even for an unsymmetrical bridge. Thus, the earthquake response of a seismically isolated bridge can be effectively obtained by modeling it as a single-degree-of-freedom system (i.e., considering the piers and deck as rigid) supported on an isolation system in two horizontal directions.  相似文献   

3.
Seismic Response of Isolated Bridges   总被引:3,自引:0,他引:3  
The seismic response of bridges seismically isolated by lead-rubber bearings (L-RB) to bidirectional earthquake excitation (i.e., two horizontal components) is presented in this paper. The force-deformation behavior of L-RB is considered as bilinear, and the interaction between the restoring forces in two orthogonal horizontal directions is duly considered in the response analysis. The specific purpose of the study is to assess the effects of seismic isolation on the peak response of the bridges, and to investigate the effects of the bidirectional interaction of restoring forces of isolation bearings. The seismic response of the lumped mass model of continuous span isolated bridges is obtained by solving the governing equations of motion in the incremental form using an iterative step-by-step method. To study the effectiveness of L-RB, the seismic response of isolated bridges is compared with the response of corresponding nonisolated bridges (i.e., bridges without isolation devices). A comparison of the response of the isolated bridges obtained by considering and ignoring the bidirectional interaction of bearing forces is made under important parametric variation. The important parameters included are the flexibility of the bridge piers and the stiffness and yield strength of the L-RB. The results show that the bidirectional interaction of the restoring forces of the L-RB has considerable effects on the seismic response of the isolated bridges. If these interaction effects are ignored, then the peak bearing displacements are underestimated, which can be crucial from the design point of view.  相似文献   

4.
In this paper, the efficiency of seismic isolation for seismic retrofitting of bridges with light superstructures and heavy substructures in the state of Illinois is studied. For this purpose, a representative bridge was selected by Illinois Department of Transportation. A detailed structural model of the bridge capable of simulating the nonlinear behavior of its components and soil–bridge interaction effects was first constructed. Iterative multimode response spectrum analysis (IMMRSA) of the bridge were conducted to assess its seismic vulnerability. The results from IMMRSA were also verified with nonlinear time history analyses. It was found that the bearings and substructures of the bridge need to be retrofitted. A conventional retrofitting technique was then adopted for the bridge and the cost of retrofit was estimated. Next, the existing bearings were replaced with seismic isolation bearings (SIB) and the seismic analysis was repeated. It was found that SIB effectively mitigated the seismic forces and eliminated the need for retrofitting of the substructures. The cost of retrofitting using SIB was then calculated and found to be only 30% of the conventional retrofitting cost.  相似文献   

5.
Often, to restrain the lateral displacement of elastomeric bearings in slab-girder bridges, two retainers in the form of angles or welded plates are placed on each side of the bearings, with a slight clearance to allow for longitudinal movement of the elastomer. The existence of the gap introduces nonlinearity into the seismic analysis of the structure, which is commonly ignored. In addition, by considering the gap, the elastomer’s stiffness in the transverse direction contributes to the overall stiffness of the system. This paper investigates the behavior of these retainers under earthquake forces. The retainers’ stiffness, the gap distance, and the period of the bridge are used as variable parameters. It is shown that the seismic demand on retainers is nonlinear in nature and depends on the frequency content of the input motion. It is also proved that ignoring the gap in the seismic analysis model can lead to lower seismic demands on the retainers and substructure. Design recommendations are given for bridges with such retainers.  相似文献   

6.
7.
The XY-friction pendulum (XY-FP) bearing is a modified Friction Pendulum (Earthquake Protection Systems, Inc., Vallejo, Calif.) bearing that consists of two perpendicular steel rails with opposing concave surfaces and a connector. The connector resists tensile forces, provides for independent sliding in the two principal directions of the isolators, and ideally, permits unhindered rotation about its vertical axis. Experimental studies on an XY-FP seismically isolated truss-bridge model were undertaken to study response under tridirectional excitations and to evaluate the use of XY-FP bearings for bridges. A truss bridge model was tested on a pair of earthquake simulators using acceleration orbits and near-field earthquake histories. The experimental results demonstrated the effectiveness of the XY-FP bearings as an uplift-prevention isolation system: the XY-FP bearings simultaneously resisted significant tensile loads and functioned as seismic isolators. The bidirectional horizontal response of the small-scale XY-FP isolation system was coupled due to the internal construction of the small-scale connectors that joined the two rails of each XY-FP bearing and the limited free-to-rotate capacity of the XY-FP bearings due to misalignment of the isolators during installation.  相似文献   

8.
Part I of this two-part paper evaluated the seismic response of typical multispan simply supported (MSSS) and multispan continuous steel girder bridges in the central and southeastern United States. The results showed that the bridges were vulnerable to damage resulting from impact between decks, and large ductility demands on nonductile columns. Furthermore, fixed and expansion bearings were likely to fail during strong ground motion. In this paper, several retrofit measures to improve the seismic performance of typical multispan simply supported and multispan continuous steel girder bridges are evaluated, including the use of elastomeric bearings, lead-rubber bearings, and restrainer cables. It is determined that lead-rubber bearings are the most effective retrofit measure for reducing the seismic vulnerability of typical bridges. While isolation provided by elastomeric bearings limits the forces into the columns, the added flexibility results in pounding between decks in the MSSS steel girder bridges. Restrainer cables, which are becoming a common retrofit measure, are effective in reducing the hinge opening in MSSS bridges with steel bearings. However, when used with elastomeric bearings, the restrainer cables negate the isolation effect of the bearings.  相似文献   

9.
Unbonded Posttensioned Concrete Bridge Piers. II: Seismic Analyses   总被引:1,自引:0,他引:1  
The seismic response characteristics of a proposed unbonded posttensioned concrete bridge-pier system are evaluated. Time-history analyses are carried out on prototype designs of single-column piers and two-column bents using detailed nonlinear finite-element (FE) models and equivalent single-degree-of-freedom (SDOF) systems embedded with phenomenological constitutive models. The phenomenological models are based on the hysteretic behavior of the prototype designs from cyclic analyses using nonlinear FE models, which have been calibrated and verified against experiments. The two modeling techniques are compared and evaluated for simulating the response of unbonded posttensioned bridge piers. Extensive time-history analyses are carried out on the SDOF models to study the influence of unbonded posttensioning on seismic response. To assess the adequacy of the proposed bridge-pier system, the seismic demands on the prototype designs are compared to their capacities as established in a companion paper. The applicability of current bridge design specifications to designing the proposed bridge-pier system is discussed.  相似文献   

10.
Foundation Isolation for Seismic Protection Using a Smooth Synthetic Liner   总被引:1,自引:0,他引:1  
Smooth synthetic materials placed underneath foundations of structures can provide seismic protection by absorbing energy through sliding. Cyclic and shaking table tests were conducted on a variety of synthetic interfaces to identify a suitable liner for use as foundation isolation. It was concluded that a high strength, nonwoven geotextile placed over an ultrahigh molecular weight polyethylene, UHMWPE (geotextile/UHMWPE) constitutes a liner that is well suited for this application. The static friction coefficient of the interface (between the geotextile and the UHMWPE) is about 0.1. The dynamic coefficient is about 0.07 and is insensitive to changes in slip rate and normal stress. A single-story structural model with and without foundation isolation was tested using a shaker table. The results demonstrate the role of foundation isolation in substantially reducing the seismic shear forces in the model. Accompanying this reduction in shear forces are slip displacements along the isolation liner. Permanent slip (final location of the structure relative to its initial position) can be reduced through the use of a small restoring force that could be provided through passive soil resistance. Peak-to-peak slip (maximum slip during shaking) needs to be permitted for foundation isolation to be effective. The experimental and analytical research results demonstrate the technical feasibility of using a smooth synthetic liner in earthquake hazard mitigation.  相似文献   

11.
Seismic Fragility of Continuous Steel Highway Bridges in New York State   总被引:2,自引:0,他引:2  
This paper presents the results of an analytical seismic fragility analysis of a typical steel highway bridge in New York State. The structural type and topological layout of this multispan I-girder bridge have been identified to be most typical of continuous bridges in New York State. The structural details of the bridge are designed as per New York State bridge design guidelines. Uncertainties associated with the estimation of material strength, bridge mass, friction coefficient of expansion bearings, and expansion-joint gap size are considered. To account for the uncertainties related to the bridge structural properties and earthquake characteristics, ten statistical bridge samples are established using the Latin Hypercube sampling and restricted pairing approach, and 100 ground motions are simulated numerically. The uncertainties of capacity and demand are estimated simultaneously by using the ratios of demands to capacities at different limit states to construct seismic fragility curves as a function of peak ground acceleration and fragility surfaces as a function of moment magnitude and epicentral distance for individual components using nonlinear and multivariate regressions. It has been observed that nonlinear and multivariate regressions show better fit to bridge response data than linear regression conventionally used. To account for seismic risk from multiple failure modes, second-order reliability yields narrower bounds than the commonly used first-order reliability method. The fragility curves and surfaces obtained from this analysis demonstrate that bridges in New York State have reasonably low likelihood of collapse during expected earthquakes.  相似文献   

12.
A new highway system is being constructed in Chile including many bridges. Due to the high seismic risk in the country, high damping rubber bearings, friction bearings, and passive energy dissipation devices have been considered in the design of the majority of the new moderate and large span bridges. Their design follows American Association of State Highway guidelines and technical specifications from the Chilean Ministry of Public Works. Experimental and analytical studies have been performed in three of these structures: (1) a 383 m long continuous beam bridge supported on high damping rubber bearings; (2) a 268 m long continuous beam bridge supported on friction bearing with additional viscous dampers; and (3) a five-span simply supported beam bridge resting on neoprene bearings. Predominant periods and damping characteristics for small amplitude vibrations have been determined from output-only nonparametric analyses. Comparison with standard analytical structural models indicates that the models normally used for analysis yield comparable predominant periods and mode shapes but the damping values typically recommended are larger than the ones observed from ambient vibrations, even when additional energy dissipation elements are present.  相似文献   

13.
14.
This paper conducts a detailed review of the seismic hazard, inventory, bridge vulnerability, and bridge retrofit practices in the Central and Southeastern United States (CSUS). Based on the analysis of the bridge inventory in the CSUS, it was found that over 12,927 bridges (12.6%) are exposed to 7% probability of exceedance (PE) in 75-year peak ground acceleration (PGA) of greater than 0.20 g, and nearly 3.5% of bridges in the CSUS have a 7% PE in 75-year PGA of greater than 0.50 g. Since many of the bridges in this region were not designed with explicit consideration of the seismic hazard, many of them are in need of seismic retrofitting to reduce their seismic vulnerability. While several of the states in the CSUS have retrofitted some of their bridges, systematic retrofit programs do not currently exist. The review of retrofit practices in the region indicates that the most common retrofit approaches in the CSUS include the use of restrainer cables, isolation bearings, column jacketing, shear keys, and seat extenders. The paper presents an overview of the common approaches and details used for the aforementioned retrofit measures. This paper serves as a useful tool for bridge engineers in the CSUS as they begin to perform systematic retrofit of vulnerable bridges in the region.  相似文献   

15.
Seismic Effect on Highway Bridges in Chi Chi Earthquake   总被引:1,自引:0,他引:1  
This paper reports the bridge damage in the Chi Chi earthquake. Damage to bridge structures may occur in the superstructure, the substructure, or the approaches. Typical types of damage are discussed and illustrated in this paper. A review of the design specifications in Taiwan is also presented to give the background on the seismic design of highway bridges in Taiwan.  相似文献   

16.
This paper describes a theoretical analysis of a type of thermal expansion bridge bearing which could be used as a lightweight low-cost elastomeric seismic isolator for application to housing, schools, and other public buildings in earthquake-prone areas of the developing world. The analysis covers the effect of the frictional resistance of the supports on the vertical stiffness of this type of isolator. The most important aspect of these bearings is that they do not have end plates, which reduces their weight, but also means that they are not bonded to the upper and lower support surfaces and are held in place only by friction. This at first sight might seem to be a deficiency of this design, but it has the advantage that it eliminates the presence of tensile stresses in the bearings. It is these tensile stresses and the bonding requirements that arise from them that lead to the high costs of conventional isolation bearings. A theoretical analysis of the response of these bearings to vertical load shows that slip between the unbonded surfaces and rigid supports above and below can have a significant influence on the vertical stiffness and the internal pressure distribution.  相似文献   

17.
The implications of earthquake loading during balanced cantilever construction of a cable-stayed bridge are examined. Finite-element models of a cable-stayed bridge were developed and multiple ground motion time history records were used to study the seismic response at the base of the towers for six stages of balanced cantilever construction. Probabilistic seismic hazard relationships were used to relate ground motions to bridge responses. The results show that there can be a high probability of having seismic responses (forces/moments) in a partially completed bridge that exceed, often by a substantial margin, the 10%/50-year design level (0.21% per annum) for the full bridge. The maximum probability of exceedance per annum was found to be 20%. This occurs because during balanced-cantilever construction the structure is in a particularly precarious and vulnerable state. The efficacy of a seismic mitigation strategy based on the use of tie-down cables intended for aerodynamic stability during construction was investigated. This strategy was successful in reducing some of the seismic vulnerabilities so that probabilities of exceedance during construction dropped to below 1% per annum. Although applied to only one cable-stayed bridge, the same approach can be used for construction-stage vulnerability analysis of other long-span bridges.  相似文献   

18.
Assessment of Performance of Seismic Isolation System of Bolu Viaduct   总被引:2,自引:0,他引:2  
The Bolu viaduct is a 2.3-km-long seismically isolated structure that was nearly complete when it was struck by the 1999 Duzce earthquake in Turkey. It suffered complete failure of the seismic isolation system and narrowly avoided total collapse due to excessive superstructure movement. This paper presents an evaluation of the design of the viaduct’s seismic isolation system and an assessment of its performance in the Duzce earthquake. Evaluation of the seismic isolation system’s design has revealed that it did not meet the requirements of the AASHTO Guide Specifications for Seismic Isolation Design. Analysis of the viaduct with motions scaled in accordance with the AASHTO Guide Specifications resulted in a displacement demand of 820 mm, which is far more than the 210 mm displacement capacity of the existing isolation system. Analysis of the viaduct for a simulated near-fault motion with characteristics consistent with the site conditions resulted in an isolation system displacement demand of 1,400 mm. This indicates that, even if the isolation system had been designed in compliance with the AASHTO, it would have still suffered damage in the earthquake.  相似文献   

19.
Results of a recent bridge inventory evaluation indicated that about 50% of Turkish highway bridges have more than 30° of skew angle and can be classified as irregular bridges. During the recent major earthquake in Turkey, multisimple-span bridges with continuous decks and link slabs performed well even though these bridges were in the vicinity of the fault line. This study aims to evaluate the improvements in seismic response of skew bridges in terms of forces and displacements when link slabs are added as a retrofit tool. A series of elastic dynamic analyses and nonlinear time history analyses were conducted to investigate the seismic response of various standard highway bridges with different span lengths and skew angles. A new reinforcement design for edge zones of link slabs is proposed for bridges located in high seismic zones. In practice, link slabs can be implemented easily during a regular redecking of a bridge.  相似文献   

20.
Elastomeric expansion bearings are often restrained laterally by retainers on each side. The retainers are in the form of a concrete shear block, rolled steel angles, or welded plates. To allow for longitudinal temperature movements, the retainers are placed with a slight clearance (gap) from the elastomer. The gap introduces nonlinearity in the seismic analysis of the bridge and, therefore, is often ignored by designers for the sake of simplicity. This paper compares the seismic response of straight and skewed slab-girder single-span bridges under the conditions of zero gap and standard gap for the retainers. Nonlinear time-history analysis is employed to measure the seismic demand on retainers, elastomers, and pinned bearings in each case. The stiffness of end-diaphragms and elastomeric bearings is included in the analysis. It is shown that these relationships are nonlinear in nature and depend on the frequency content of the input motion. It is also proved that ignoring the nonlinearity in the seismic bridge model can lead to erroneous results that are unsafe to use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号