共查询到20条相似文献,搜索用时 15 毫秒
1.
The results from a parametric study on the impact factors for 180 curved continuous composite multiple-box girder bridges are presented. Expressions for the impact factors for tangential flexural stresses, deflection, shear forces and reactions are deduced for AASHTO truck loading. The finite-element method was utilized to model the bridges as three-dimensional structures. The vehicle axle used in the analysis was simulated as a pair of concentrated forces moving along the concrete deck in a circumferential path with a constant speed. The effects of bridge configurations, loading positions, and vehicle speed on the impact factors were examined. Bridge configurations included span length, span-to-radius of curvature ratio, number of lanes, and number of boxes. The effect of the mass of the vehicle on the dynamic response of the bridges is also investigated. The data generated from the parametric study and the deduced expressions for the impact factors would enable bridge engineers to design curved continuous composite multiple-box girder bridges more reliably and economically. 相似文献
2.
The use of horizontally curved composite multiple-box girder bridges in modern highway systems is quite suitable in resisting torsional and warping effects induced by highway curvatures. Bridge users react adversely to vibrations of a bridge and especially where torsional modes dominate. In this paper, continuous curved composite multiple-box girder bridges are analyzed, using the finite-element method, to evaluate their natural frequencies and mode shapes. Experimental tests are conducted on two continuous twin-box girder bridge models of different curvatures to verify and substantiate the finite-element model. Empirical expressions are deduced from these results to evaluate the fundamental frequency for such bridges. The parameters considered herein are the span length, number of lanes, number of boxes, span-to-radius of curvature ratio, span-to-depth ratio, end-diaphragm thickness, number of cross bracings, and number of spans. 相似文献
3.
The AASHTO LRFD load distribution factor equation was developed based on elastic finite element analysis considering only primary members, i.e., the effects of secondary elements such as lateral bracing and parapets were not considered. Meanwhile, many bridges have been identified as having significant cracking in the concrete deck. Even though deck cracking is a well-known phenomenon, the significance of pre-existing cracks on the live load distribution has not yet been assessed. The purpose of this research is to investigate the effect of secondary elements and deck cracking on the lateral load distribution of girder bridges. First, secondary elements such as diaphragms and parapets were modeled using the finite element method, and the calculated load distribution factors were compared with the code-specified values. Second, the effects of typical deck cracking and crack types that have a major effect on load distribution were identified through a number of nonlinear finite element analyses. It was established that the presence of secondary elements may produce load distribution factors up to 40% lower than the AASHTO LRFD values. Longitudinal cracking was found to increase the load distribution factor by up to 17% when compared to the LRFD value while the transverse cracking was found to not significantly influence the transverse distribution of moment. 相似文献
4.
The use of horizontally curved composite box-girder bridges in modern highway systems has become increasingly popular for economic as well as for aesthetic considerations. Based on a recent literature review on the design of box-girder bridges, it was observed that a simple design method for curved bridges, based on load distribution factors for stresses and shears, is as yet unavailable. This paper presents the results of an extensive parametric study, using a finite element method, in which the structural responses of 240 two-equal-span continuous curved box-girder bridges of various geometries were investigated. The parameters considered in this study included span-to-radius of curvature ratio, span length, number of lanes, number of boxes, web slope, number of bracings, and truck loading type. Based on the data generated from this study, empirical formulas for load distribution factors for maximum longitudinal flexural stresses and maximum deflection due to dead load as well as AASHTO live loading were deduced. An illustrative design example is presented. 相似文献
5.
Modern highway bridges are often subject to tight geometric restrictions and, in many cases, must be built in curved alignment. These bridges may have a cross section in the form of a multiple steel box girder composite with a concrete deck slab. This type of cross section is one of the most suitable for resisting the torsional, distortional, and warping effects induced by the bridge’s curvature. Current design practice in North America does not specifically deal with shear distribution in horizontally curved composite multiple steel box girder bridges. In this paper an extensive parametric study, using an experimentally calibrated finite-element model, is presented, in which simply supported straight and curved prototype bridges are analyzed to determine their shear distribution characteristics under dead load and under AASHTO live loadings. The parameters considered in this study are span length, number of steel boxes, number of traffic lanes, bridge aspect ratio, degree of curvature, and number and stiffness of cross bracings and of top-chord systems. Results from tests on five box girder bridge models verify the finite-element model. Based on the results from the parametric study simple empirical formulas for maximum shears (reactions) are developed that are suitable for the design office. A comparison is made with AASHTO and CHBDC formulas for straight bridges. An illustrative example of the design is presented. 相似文献
6.
The purpose of this paper is to develop new formulas for live load distribution in horizontally curved steel I-girder bridges. The formulas are developed by utilizing computer model results for a number of different horizontally curved steel I-girder bridges. The bridges used in this study are modeled as generalized grillage beam systems composed of horizontally curved beam elements for steel girders and substructure elements for lateral wind bracing and cross frames which consist of truss elements. Warping torsion is taken into consideration in the analysis. The effect of numerous parameters, including radius of curvature, girder spacing, overhang, etc., on the load distribution are studied. Key parameters affecting live load distribution are identified and simplified formulas are developed to predict positive moment, negative moment, and shear distribution for one-lane and multiple-lane loading. Comparisons of the formulas with finite element method and grillage analysis show that the proposed formulas have more accurate results than the various available American Association of State Highway and Transportation Officials specifications. The formulas developed in this study will assist bridge engineers and researchers in predicting the actual live load distribution in horizontally curved steel I-girder bridges. 相似文献
7.
This paper presents simple relationships for calculating live-load distribution factors for glued-laminated timber girder bridges with glued-laminated timber deck panels. Analytical models were developed using the Ansys 113 finite-element program, and the results were validated using recorded data from four in-service timber bridges. The effects of the bridge span length, the spacing between girders, and the bridge width on the distribution of the live load were investigated by using the validated models. The live-load distribution factors obtained from the field test and the analytical models were compared with those obtained using the AASHTO LRFD Bridge Design Specifications2 live-load distribution relations. The comparison showed that the live-load distribution factors obtained by using the AASHTO LRFD Bridge Design Specifications2 were conservative. For this reason, statistical methods were used to develop accurate relationships that can be used to calculate the live-load distribution factors in the design of glued-laminated girder bridges. 相似文献
8.
David V. Jáuregui Joseph A. Yura Karl H. Frank Sharon L. Wood 《Canadian Metallurgical Quarterly》2002,7(1):39-49
Field tests conducted on a noncomposite steel girder bridge are described. Two separate 36.6 m (120 ft) units, each three-span continuous, were subjected to increasing static loads by means of a trailer and concrete barriers. Results show that the girders acted as partially composite sections in the positive moment region up to the onset of yield. Due to curb participation and the transverse location of the applied load, exterior girders exhibited a higher degree of partially composite action. In the negative moment region, partially composite action was evident only in the exterior girders. As a result of partially composite action and curb participation, the yield load was about 7% higher than predicted. Bearing restraint is shown not to have a significant impact on the behavior of the tested bridges. In addition, the stiffness of the interior girders, as measured under the constant weight of a dump truck, are shown to be virtually unaffected by the heavy trailer loads. More significant changes in girder stiffness were observed between different transverse load positions of the dump truck. 相似文献
9.
To investigate the natural frequency of a railway girder bridge under vehicle loads, two methods are presented. First, the natural frequency of a railway girder bridge under vehicle loads is obtained by solution of the eigenvalue of the vehicle-bridge interaction equation at each step of the numerical integration. Second, based on the vehicle-bridge interaction equation, an approximate formula is developed. The results show that the natural frequency of a railway girder bridge under vehicle loads varies periodically as the vehicles pass over the bridge. The results obtained with the two methods are then compared, showing that a good agreement is achieved. From parametric studies, the effects of the unsprung mass, the sprung mass, and the stiffness of the vehicle suspension are discussed. 相似文献
10.
This paper presents the results of a parametric study related to the wheel load distribution in one-span, simply supported, multilane, reinforced concrete slab bridges. The finite-element method was used to investigate the effect of span length, slab width with and without shoulders, and wheel load conditions on typical bridges. A total of 112 highway bridge case studies were analyzed. It was assumed that the bridges were stand-alone structures carrying one-way traffic. The finite-element analysis (FEA) results of one-, two-, three-, and four-lane bridges are presented in combination with four typical span lengths. Bridges were loaded with highway design truck HS20 placed at critical locations in the longitudinal direction of each lane. Two possible transverse truck positions were considered: (1) Centered loading condition where design trucks are assumed to be traveling in the center of each lane; and (2) edge loading condition where the design trucks are placed close to one edge of the slab with the absolute minimum spacing between adjacent trucks. FEA results for bridges subjected to edge loading showed that the AASHTO standard specifications procedure overestimates the bending moment by 30% for one lane and a span length less than 7.5 m (25 ft) but agrees with FEA bending moments for longer spans. The AASHTO bending moment gave results similar to those of the FEA when considering two or more lanes and a span length less than 10.5 m (35 ft). However, as the span length increases, AASHTO underestimates the FEA bending moment by 15 to 30%. It was shown that the presence of shoulders on both sides of the bridge increases the load-carrying capacity of the bridge due to the increase in slab width. An extreme loading scenario was created by introducing a disabled truck near the edge in addition to design trucks in other lanes placed as close as possible to the disabled truck. For this extreme loading condition, AASHTO procedure gave similar results to the FEA longitudinal bending moments for spans up to 7.5 m (25 ft) and underestimated the FEA (20 to 40%) for spans between 9 and 16.5 m (30 and 55 ft), regardless of the number of lanes. The new AASHTO load and resistance factor design (LRFD) bridge design specifications overestimate the bending moments for normal traffic on bridges. However, LRFD procedure gives results similar to those of the FEA edge+truck loading condition. Furthermore, the FEA results showed that edge beams must be considered in multilane slab bridges with a span length ranging between 6 and 16.5 m (20 and 55 ft). This paper will assist bridge engineers in performing realistic designs of simply supported, multilane, reinforced concrete slab bridges as well as evaluating the load-carrying capacity of existing highway bridges. 相似文献
11.
Shear Lag in Box Girder Bridges 总被引:3,自引:0,他引:3
A finite-segment method for analyzing shear-lag effects in box girders is presented in this paper, with an assumption that the spanwise displacements of the flange plates are described by a third-power parabolic function. The governing differential equations for two generalized displacements are established according to the principle of minimum potential energy. In order to obtain the longitudinal stresses under the shear-lag effect, the element stiffness equations are developed based on the variational principle by taking the homogeneous solutions of the differential equations as the displacement functions of the finite segment. The effect of two major parameters on shear lag is investigated for cantilever and continuous box girders with varying depth under three kinds of loads. It is shown that the height ratio, in addition to the flange width to span length ratio, has a significant influence on the shear lag. The solutions based on the present method are compared with the results of model testing and the finite strip method. The accuracy of the present method is proved to be satisfactory. 相似文献
12.
This paper presents a study of the skewness effect on live load reactions at the piers of continuous bridges. Two prestressed concrete I-beam bridges and one steel I-girder bridge were selected for the study. To evaluate the skew effect, the skew angle of the bridges was varied from 0 to 60°. Live load reaction at support and shear at the beam ends of the selected bridges were determined using finite-element analysis. The comparison of the distribution factors of live load reactions and shear revealed that the distribution factor of reaction at piers was higher than that of shear at beam ends near the same support. The increase in the reaction distribution factor was more significant than that in the shear distribution factor in the interior beam line when the skew angle was greater than 30°. The LRFD shear equations and the Lever rule method could conservatively predict live load reaction distribution for piers in exterior beam lines but underestimate live load reaction distribution in interior beam lines. It is recommended that more research be performed for the distribution factor of live load reaction to quantify the responses. 相似文献
13.
The current American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Specifications impose fairly strict limits on the use of its live-load distribution factor for design of highway bridges. These limits include requirements for a prismatic cross section, a large span-length-to-width ratio, and a small plan curvature. Refined analyses using 3D models are required for bridges outside of these limits. These limits place severe restrictions on the routine design of bridges in California, as box-girder bridges outside of these limits are frequently constructed. This paper presents the results of a study investigating the live-load distribution characteristics of box-girder bridges and the limits imposed by the LRFD specifications. Distribution factors determined from a set of bridges with parameters outside of the LRFD limits are compared with the distribution factors suggested by the LRFD specifications. For the range of parameters investigated, results indicated that the current LRFD distribution factor formulas generally provide a conservative estimate of the design bending moment and shear force. 相似文献
14.
Seismic Performance Assessment of Simply Supported and Continuous Multispan Concrete Girder Highway Bridges 总被引:1,自引:0,他引:1
Seismic evaluations of typical concrete girder bridges are conducted for both a multispan simply supported and a multispan continuous girder bridge common to the Central and Southeastern United States. These evaluations are performed for an approximate hazard level of 2% in 50?years by performing nonlinear time history analyses on three-dimensional analytical models. The results show significant vulnerabilities in the reinforced concrete columns, the abutments, and also in unseating of the girders. In general, the longitudinal loading of the bridges results in larger demands than the transverse loading. However, the simply supported bridge sustains bearing deformations in the transverse direction which are on the same order as their longitudinal response. These results suggest that both longitudinal and transverse loading are significant and should be considered when performing seismic hazard analyses of these bridges. 相似文献
15.
Brad Cross Brent Vaughn Nader Panahshahi David Petermeier Yuen Shuenn Siow Thomas Domagalski 《Canadian Metallurgical Quarterly》2009,14(3):154-163
Tests on twelve bridges (six along Interstate 55 and six along Interstate 70/270 in Illinois) were performed to determine the validity of certain provisions for calculating bearing forces in the load and resistance factor design (LRFD) and the load factor design bridge specifications. The bridges were selected to be typical of Illinois interstate highway bridges and maintain a range of parameters to study. These bridges were instrumented on their beam webs with three strain gauge rosettes installed on each beam to measure shear stresses caused by loads. Static tests and slow moving 8 km/h (5?mi/h) tests with a loaded truck in specified locations were performed. Dynamic tests at highway speeds were also completed. Finite-element models were developed and compared to the test results. The study shows that the LRFD specification procedures closely approximate the shear distribution factors determined by finite-element analysis and testing. 相似文献
16.
This paper presents a method for determining the dynamic impact factors for horizontally curved composite single- or multicell box girder bridges under AASHTO truck loading. The bridges are modeled as three-dimensional structures using commercially available software. The vehicle is idealized as a pair of concentrated forces, with no mass, traveling in two circumferential paths parallel to the curved centerline of bridges. An extensive parametric study is conducted, in which over 215 curved composite box girder bridge prototypes are analyzed. The key parameters considered in this study are: Number of cells, number of lanes, degree of curvature, arc span length, slope of the outer steel webs, number and area of bracing and top chord systems, and truck(s) speed and truck(s) positioning. Based on the data generated from the parametric study, expressions for dynamic impact factors for longitudinal moment, reaction, and deflection are proposed as function of the ratio of the arc span length to the radius of curvature. The results from this study would enable bridge engineers to design horizontally curved composite box girder bridges more reliably and economically. Furthermore, the results can be used to potentially increase the live-load capacity of existing bridges to prevent posting or closing of the bridge. 相似文献
17.
Constructed in 1972 with ASTM A36 (250 MPa) steel, a highway bridge in Maryland is comprised of seven welded steel plate girders of a constant web depth of 2,286 mm (90 in.). In March 2003, the web fractures of two steel girders were discovered in a three-span continuous superstructure unit. A full-height web fracture occurred in an interior girder at a cross frame connection plate; and a partial-height web fracture occurred in an exterior girder at an intermediate transverse stiffener next to a cross frame. The investigation of the girder fractures involved fracture surface examination, material testing, fracture mechanics analysis, and comprehensive finite-element modeling for fracture driving forces. The fracture mechanics analysis indicated that a brittle web fracture could occur at a high stress level with either a surface crack or a through-thickness crack of certain dimensions. Finite-element analysis using a global model and submodels investigated three possible causes: (1) localized distortion of the unsupported web gap due to the lateral forces of cross frame members; (2) fabrication induced out-of-flatness of the web plate under in-plane loading; and (3) residual stresses at the fracture origin area due to the stiffener-to-web welds. The investigation concluded that one or a combination of these can result in the high local tensile stresses triggering a brittle web fracture with certain crack dimensions at the fracture origin area. Several retrofit concepts were investigated for their effectiveness in reducing stresses in the fracture origin area. Bridge inspections in the subsequent 6 years after the web fractures have not reported any other cracks in the bridge. 相似文献
18.
The collapse of the State Route 69 Bridge over the Tennessee River near Clifton, Tennessee, is an example of how instability and lateral torsional buckling failure of a single steel bridge girder during erection might cause collapse of the whole steel superstructure. Close attention should be given to the stability of steel plate girders during erection when the lateral support provided to the compression flange might temporarily not be present. Rules of thumb in use today have been adopted by contractors/subcontractors to check the stability of cantilever or simply supported girders under erection using the L/b ratio, where L is the unbraced length and b is the compression flange width. For each girder section, a maximum L/b ratio exists beyond which lateral torsional buckling failure would occur under girder self-weight. Parametric studies were conducted following the latest AASHTO LRFD code in order to indentify the maximum L/b ratio for various girder sections and check the rules of thumb, as well as determine the dominating section parameters on girder stability under erection. Advanced nonlinear finite-element analyses were also conducted on a girder section for both the cantilever and the simply supported case in order to further understand the behavior of girder instability due to lateral torsional buckling under the self-weight, as well as to develop a trial-and-error methodology for identifying the maximum L/b ratio using computer analysis. At the same time, the effect of lateral bracing location on the cantilever free end has been investigated, and it turned out that bracing the top tension flange would be more effective to prevent lateral torsional buckling than bracing the bottom compression flange. 相似文献
19.
Steel Girder Design per AASHTO LRFD Specifications (Part 2) 总被引:1,自引:0,他引:1
Gregor P. Wollmann 《Canadian Metallurgical Quarterly》2004,9(4):375-381
This is the second of two companion papers discussing and illustrating the AASHTO LRFD Bridge Design Specifications for the design of steel girders subject to flexure and shear. In the first paper, notation was introduced that allows reformulation of the AASHTO design equations in a more convenient format and the design of steel I-girders in flexure was presented. The second paper addresses design of box girders for flexure and design of box and I-girders for shear. The design approach is illustrated by two detailed example problems. 相似文献
20.
Steel Girder Design per AASHTO LRFD Specifications (Part 1) 总被引:1,自引:0,他引:1
Gregor P. Wollmann 《Canadian Metallurgical Quarterly》2004,9(4):364-374
The primary objective of this paper and its companion is to give the practicing engineer tools for quick design of steel and composite girders in flexure and shear and to provide a reference to aid with the transition to the AASHTO LRFD Specifications. The AASHTO equations are presented in a modified form, using newly introduced notation that allows formulation of most of the equations without explicit dependency on the steel strength. Based on these modified equations, charts are developed that help to visualize the sometimes complex design equations and which also may be found useful as design aids for preliminary designs. For noncompact sections the AASHTO equations are expressed consistently in a dual form that emphasizes the distinction between slender and nonslender elements. This is the first of two papers and addresses the design of I-girders for flexure. 相似文献