首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary elements such as barriers, sidewalks, and diaphragms may affect the distribution of live load to bridge girders. The objective of this study is to evaluate their effect on girder reliability if these elements are designed to be sufficiently attached to the bridge so as not to detach under traffic live loads. Simple-span, two-lane structures are considered, with composite steel girders supporting a reinforced concrete deck. Several representative structures are selected, with various configurations of barriers, sidewalks, and diaphragms. Bridge analysis is performed using a finite-element procedure. Load and resistance parameters are treated as random variables. Random variables considered are composite girder flexural strength, secondary element stiffness, load magnitude (dead load and truck traffic live load), and live load position. It was found that typical combinations of secondary elements have a varying influence on girder reliability, depending on secondary element stiffness and bridge geometry. Suggestions are presented that can account for secondary elements and that provide a uniform level of reliability to bridge girders.  相似文献   

2.
Current bridge design and rating techniques are based at the component level and thus cannot predict the ultimate capacity of bridges, which is a function of system-level interactions. While advances in computer technology have made it possible to conduct accurate system-level analyses, which can be used to design more efficient bridges and produce more accurate ratings of existing structures, the knowledge base surrounding system-level bridge behavior is still too small for these methods to be widely considered reliable. Thus, to advance system-level design and rating, a 1/5-scale slab-on-steel girder bridge was tested to ultimate capacity and then analytically modeled. The test demonstrated the significant reserve capacity of the steel girders, and the response of the specimen was governed by the degradation of the reinforced-concrete deck. To accurately capture the response of the specimen in an analytical model, the degradation of the deck and other key features of the specimen were modeled by using a dynamic analysis algorithm in a commercially available finite-element analysis program ABAQUS.  相似文献   

3.
Many parts of the central and southeastern United States have recently begun initiating seismic retrofit programs for bridges on major interstate highways. One of the most common retrofit strategies is to provide cable restrainers at the intermediate hinges and abutments in order to reduce the likelihood of collapse due to unseating. To evaluate the force-displacement behavior of the cable restrainer retrofits, a full-scale bridge setup was constructed based on an existing multispan, simply supported steel girder bridge in Tennessee, that has been considered for seismic retrofit using cable restrainers. Seismic cable restrainers were connected to the bridge pier using steel bent plates, angles, and undercut anchors embedded in the concrete as specified by typical bridge retrofit plans. The full-scale bridge model was subjected to monotonic loading to test the capacity of the cable restrainer system and to determine the modes of failure. The results showed that the primary modes of failure are in the connection elements of the pier and girders, and they occur at force levels much lower than the strength of the cable. Modifications to the connection elements were designed and tested. The new connections resulted in a higher strength and deformation capacity of the cable restrainer assembly.  相似文献   

4.
Field testing is valuable for evaluating existing bridges. It allows the owner to reduce the conservatism of analytical rating methods and safely rate the bridge for higher loads. Many factors not considered in design contribute to the response of a tested bridge. Several of these, like actual load distribution and additional stiffness from curbs and railings, are welcome benefits that can be used to increase load ratings. However, there are also contributions from bearing restraint forces and unintended composite action that may not be reliable during the bridge's service life. These factors tending to increase the load capacity need to be separated and quantified so that the bridge owner can: (1) confirm the origin of the useable benefit; and (2) remove the unwanted contributions. Presented are procedures for load rating steel girder bridges through field testing. A systematic approach is presented to separate and quantify the contributions from various effects. Therefore, the responsible engineer can remove the unwanted contributions and justify an experimental load rating. The procedures are demonstrated for a three-span steel girder bridge.  相似文献   

5.
This paper reports on a new bridge deck slab flange-to-flange connection system for precast deck bulb tee (DBT) girders. In prefabricated bridge system made of DBT girders, the concrete deck slab is cast with the prestressed girder in a controlled environment at the fabrication facility and then shipped to the bridge site. This system requires that the individual prefabricated girders be connected through their flanges to make it continuous for live load distribution. The objectives of this study are to develop an intermittent bolted connection for DBT bridge girders and to provide experimental data on the ultimate strength of the connection system. This includes identifying the crack formation and propagation, failure mode, and ultimate load carrying capacity. In this study, three different types of intermittent bolted connection were developed. Four actual-size bridge panels were fabricated and then tested to collapse. The effects of the size and the level of the fixity of the connecting steel plates, as well as the location of the wheel load were examined. The developed joint was considered successful if the experimental wheel load satisfied the requirements specified in North American bridge codes. It was concluded that location of the wheel load at the deck slab joint affected the ultimate load carrying capacity of the connections developed. Failure of the joint was observed to be due to either excessive deformation and yielding of the connecting steel plates or debonding of the embedded studs in concrete.  相似文献   

6.
The conventional analysis and design of highway bridges ignore the contribution of sidewalks and∕or railings in a bridge deck when calculating the flexural strength of superstructures. The presence of sidewalks and railings or parapets acting integrally with the bridge deck have the effect of stiffening the outside girders and attracting more load while reducing the load effects in the interior girders. This paper presents the results of a parametric study showing the influence of typical sidewalks and railings on wheel load distribution as well as on the load-carrying capacity of highway bridges. A typical one-span, two-lane, simply supported, composite steel girder bridge was selected in order to investigate the influence of various parameters such as: span length, girder spacing, sidewalks, and railings. A total of 120 bridges were analyzed using three-dimensional finite-element analysis. American Association of State Highway and Transportation Officials (AASHTO) HS20 design trucks were positioned in both lanes to produce the maximum moments. The finite-element analysis results were also compared with AASHTO wheel load distribution factors. The AASHTO load and resistance factor design (LRFD) wheel load distribution formula correlated conservatively with the finite-element results and all were less than the typical empirical formula (S∕5.5). The presence of sidewalks and railings were shown to increase the load-carrying capacity by as much as 30% if they were included in the strength evaluation of highway bridges.  相似文献   

7.
The purpose of this paper is to develop new formulas for live load distribution in horizontally curved steel I-girder bridges. The formulas are developed by utilizing computer model results for a number of different horizontally curved steel I-girder bridges. The bridges used in this study are modeled as generalized grillage beam systems composed of horizontally curved beam elements for steel girders and substructure elements for lateral wind bracing and cross frames which consist of truss elements. Warping torsion is taken into consideration in the analysis. The effect of numerous parameters, including radius of curvature, girder spacing, overhang, etc., on the load distribution are studied. Key parameters affecting live load distribution are identified and simplified formulas are developed to predict positive moment, negative moment, and shear distribution for one-lane and multiple-lane loading. Comparisons of the formulas with finite element method and grillage analysis show that the proposed formulas have more accurate results than the various available American Association of State Highway and Transportation Officials specifications. The formulas developed in this study will assist bridge engineers and researchers in predicting the actual live load distribution in horizontally curved steel I-girder bridges.  相似文献   

8.
Inelastic design of steel girder bridges can result in beneficial material and fabrication cost savings and reduce the susceptibility of steel girder bridges to fatigue. The ability to redistribute large negative region moments, coupled with section capacities exceeding the yield moment, results in an efficient structure used to its limit-state capacity. Proposed LRFD inelastic design provisions are presented that allow compact or noncompact pier sections resulting in consistent bridge design across the steel girder bridge inventory. This paper illustrates the simplified inelastic design provisions, presents an example design of a two-span composite bridge comprising noncompact sections at the pier, and summarizes the experimental verification of the example design. The proposed inelastic design procedures are simple to apply, removing the cumbersome continuity and iterative requirements of past inelastic design practice.  相似文献   

9.
The AASHTO LRFD load distribution factor equation was developed based on elastic finite element analysis considering only primary members, i.e., the effects of secondary elements such as lateral bracing and parapets were not considered. Meanwhile, many bridges have been identified as having significant cracking in the concrete deck. Even though deck cracking is a well-known phenomenon, the significance of pre-existing cracks on the live load distribution has not yet been assessed. The purpose of this research is to investigate the effect of secondary elements and deck cracking on the lateral load distribution of girder bridges. First, secondary elements such as diaphragms and parapets were modeled using the finite element method, and the calculated load distribution factors were compared with the code-specified values. Second, the effects of typical deck cracking and crack types that have a major effect on load distribution were identified through a number of nonlinear finite element analyses. It was established that the presence of secondary elements may produce load distribution factors up to 40% lower than the AASHTO LRFD values. Longitudinal cracking was found to increase the load distribution factor by up to 17% when compared to the LRFD value while the transverse cracking was found to not significantly influence the transverse distribution of moment.  相似文献   

10.
In the nonlinear analysis of a reinforced concrete T-beam bridge superstructure using grillage idealization, and rigid–plastic idealization of moment–curvature and torque–twist relationships of the resulting grillage members, it becomes necessary to compute the plastic rotation capacity of the resulting T-beam bridge girder due to limited ultimate strain capacity of concrete. An idea about the plastic rotation capacity of these members enables one to determine the true ultimate load carrying capacity of this type of structure, extent of redistribution of stresses at failure, and ductility of the structure. This paper presents analytical methods to determine the plastic rotation capacity of reinforced cement concrete T-beam bridge girder (or grillage member) under the combined influence of flexure and torsion. The methods have been validated by experiments. The analytical methods are based on skew-bending and space truss theories. The tests have been carried out on 1:6 microconcrete models. The salient conclusions have been enumerated.  相似文献   

11.
Large Shear Studs for Composite Action in Steel Bridge Girders   总被引:1,自引:0,他引:1  
Shear studs used in composite steel bridge construction are typically 19.1 mm (? in.) or 22.2 mm (? in.) in diameter. This paper presents the development and implementation of the 31.8 mm (1??in.) stud diameter. Because the 31.8 mm (1??in.) stud has about twice the strength and a higher fatigue capacity than the 22.2 mm (? in.) stud, fewer studs are required along the length of the steel girder. This would increase bridge construction speed and future deck replacement, and reduce the possibility of damage to the studs and girder top flange during deck removal. Studs also can be placed in one row only, over the web centerline, freeing up most of the top flange width and improving safety conditions for field workers. This paper provides information on the development, welding, quality control, and testing of the 31.8 mm (1??in.) stud. Information on the first bridge built in the state of Nebraska with the 31.8 mm (1??in.) studs is provided.  相似文献   

12.
Large numbers of conventionally reinforced concrete (CRC) bridges in the national bridge inventory built during the 1950s are lightly reinforced for shear. Inspections revealed many of these bridges exhibit diagonal cracks resulting in load postings, monitoring, emergency shoring, repairs, and unscheduled bridge replacements. A research program was conducted to investigate the behavior and capacity of CRC bridge girders with vintage details. Laboratory tests of large-size girders representative of 1950s design and construction practice were carried out. Various steel reinforcement configurations were tested. Loading conditions were varied to reproduce girder behavior at different positions in a bridge and various loading protocols were considered. Test results provide a comprehensive data set for comparison of analysis methods and repair strategies; and indicated that anchorage of flexural steel was key to developing higher ultimate capacity, initial crack damage may not necessarily contribute to the final failure mode, and crack width alone may not indicate the level of damage to the beam.  相似文献   

13.
Ultrahigh performance concrete (UHPC) has been used in several bridges and other structures throughout the world and is beginning to gain more exposure in the United States. For UHPC to continue to gain acceptance for bridge design in the United States, design specifications and procedures must be established for bridge engineers to utilize. The flexural behavior at the ultimate limit state for an UHPC girder is still a significant design concern. Therefore, this research examined three analytical approaches to evaluate the ultimate flexural strength of UHPC girders. In addition, Monte Carlo simulations were performed to account for the variability of several parameters and to determine reliability indices using the three analytical methods. The analysis results show that using typical AASHTO procedures, acceptable levels of reliability can be achieved while allowing the use of familiar and noncomplex equations.  相似文献   

14.
The present study is designed to determine the effect of major parameters on maximum total bending moments of curved girders, establish the relationship between key parameters and girder distribution factors (GDFs), and develop new approximate distribution factor equations. A level of analysis study using three numerical models was performed to establish an appropriate numerical modeling method on the basis of field test results. A total of 81 two-traffic lane curved bridges were analyzed under HL-93 loading. Two approximate GDF equations were developed based on the data obtained in this study: (1) a single GDF based on total girder normal stress; and (2) a combined GDF treating bending and warping normal stress separately. The two equations were developed based on both an averaged coefficient method and regression analysis. A goodness-of-fit test revealed that the combined GDF model developed by regression analysis best predicted GDFs. The present study demonstrated that radius, span length, cross frame spacing and girder spacing most significantly affect GDFs. The proposed GDF equations are expected to provide a more refined live load analysis for preliminary design.  相似文献   

15.
This paper presents a method for determining the dynamic impact factors for horizontally curved composite single- or multicell box girder bridges under AASHTO truck loading. The bridges are modeled as three-dimensional structures using commercially available software. The vehicle is idealized as a pair of concentrated forces, with no mass, traveling in two circumferential paths parallel to the curved centerline of bridges. An extensive parametric study is conducted, in which over 215 curved composite box girder bridge prototypes are analyzed. The key parameters considered in this study are: Number of cells, number of lanes, degree of curvature, arc span length, slope of the outer steel webs, number and area of bracing and top chord systems, and truck(s) speed and truck(s) positioning. Based on the data generated from the parametric study, expressions for dynamic impact factors for longitudinal moment, reaction, and deflection are proposed as function of the ratio of the arc span length to the radius of curvature. The results from this study would enable bridge engineers to design horizontally curved composite box girder bridges more reliably and economically. Furthermore, the results can be used to potentially increase the live-load capacity of existing bridges to prevent posting or closing of the bridge.  相似文献   

16.
The significance for inelastic design of moment-inelastic rotation behavior with respect to interior pier sections of steel girder bridges is experimentally investigated. Under center span loading conditions, 12 welded, built-up, simply supported beams with various slenderness ratios of the flange and web plates are tested. In this test, lengths and locations for partial longitudinal stiffeners on the web plates are varied, and the results are then compared with the inelastic deformation capacity of beams without longitudinally stiffened web plates. The results are also compared with the inelastic design code in AASHTO LRFD bridge design specifications. It is concluded that (1) the ultimate strength of stiffened beams is governed by the local buckling at the compression flange of the far end from the loading point due to the presence of a partial longitudinal stiffener; and (2) the inelastic rotation capacity and ultimate strength of a beam with a stiffened web plate are remarkably improved. The optimum length and location of stiffeners on the plates are given.  相似文献   

17.
Fatigue damage to multigirder steel bridges on skew can result from distortion caused by differential deflection of adjacent girders that impose out-of-plane bending of girder web gaps. Existing design procedures give recommendations to mitigate the effects of distortional fatigue but do not directly address secondary, out-of-plane deformations, nor do they provide guidance in determining the magnitude of out-of-plane stresses in girder webs. An experimental study was conducted to (1) implement a field monitoring program for a typical multigirder steel bridge on skew supports; (2) assess the frequency and magnitude of distortional fatigue stresses at web-stiffener connections; and (3) evaluate the impact of these stresses on fatigue life. Measurements from twelve strain gauges were continuously monitored and recorded for a period exceeding three months on Minnesota Department of Transportation Bridge #27734. Web-gap stresses in negative-moment regions were found to be much larger than flange stresses. The results of a detailed finite-element study indicate that actual strains at the web gaps may be much larger than the values measured at the strain gauge locations. This study also revealed the mechanism of web-gap distortion, suggesting an approximate method for predicting web-gap stress based on known girder differential deflection.  相似文献   

18.
The monitoring of a precast, prestressed girder bridge during fabrication and service provided the opportunity to observe temperature variations and to evaluate the accuracy of calculated strains and cambers. The use of high curing temperatures during fabrication affects the level of prestress because the strand length is fixed during the heating, the coefficients of thermal expansion of steel and concrete differ, and the concrete temperature distribution may not be uniform. For the girders discussed here, these effects combined to reduce the calculated prestressing stress from the original design values at release by 3 to 7%, to reduce the initial camber by 26 to 40%, and to increase the bottom tension stress in service by 12 to 27%. The main effect of applying the standard service temperature profiles to the bridge was to increase the bottom stress by 60% of the allowable tension stress. These effects can be compensated for by increasing the amount of prestressing steel, but in highly stressed girders, such an increase leads to increased prestress losses (requiring yet more strands) and higher concrete strength requirements at release.  相似文献   

19.
Since the first edition of the AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges was published in 1980, there have been two more editions including many revisions to the specifications. Some changes were based on valid research results and others were based on limited or uncertain research results and information. The current edition of the specifications contains provisions that may result in unreasonably conservative load capacity ratings. In this paper, the results of field tests and analyses conducted on the Veterans’ Memorial curved steel-box girder bridge are discussed. Test and analytical results show: (1) current AASHTO guide specifications regarding the first transverse stiffener spacing at the simple end support of a curved girder may be too conservative for bridge load capacity ratings; (2) current AASHTO guide specifications may greatly overestimate the dynamic loadings of curved box girder bridges with long span lengths; and (3) a plane grid finite-element model of about 20 elements per span in the longitudinal direction can be used to analyze curved multigirder bridges with external bracings located only over supports. The research results are instructive and applicable to bridge design and bridge load-rating activities.  相似文献   

20.
Special attention is required in the construction of horizontally curved steel I-girder bridges due to coupled effects of primary bending and torsional forces. Misguided steel erection procedures can lead to undesired stresses, deflections, and rotations in these types of bridges, resulting in a structure with misaligned geometry and in an unknown state of stress. Further complicating the issue, little guidance related to curved bridge behavior during construction is provided by current design codes, leaving contractors and designers uncertain as to the most appropriate steps to take to achieve an efficient, safe structure. A horizontally curved, six-span steel I-girder bridge located in central Pennsylvania that experienced severe geometric misalignments and fit-up complications during steel erection was studied to investigate curved girder behavior during construction. The structure was monitored during corrective procedures intended to realign it with the design geometry, and field data used to calibrate a three-dimensional computer model generated via SAP2000. The techniques and assumptions proven in the calibration process were used to create a numerical model of a three-span continuous portion of the bridge, which was the subject of several analyses exploring the effects erection sequencing, implementation of upper lateral bracing, and use of temporary supports had on the final deformed shape of the curved superstructure. Findings indicated that using paired girder erection produced smaller radial and vertical deformations than single girder techniques for this structure, and that the use of lateral bracing between the fascia and adjacent interior girders and the placement of temporary shoring towers at span quarter points are both effective means of further reducing levels of deflection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号