首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current bridge design and rating techniques are based at the component level and thus cannot predict the ultimate capacity of bridges, which is a function of system-level interactions. While advances in computer technology have made it possible to conduct accurate system-level analyses, which can be used to design more efficient bridges and produce more accurate ratings of existing structures, the knowledge base surrounding system-level bridge behavior is still too small for these methods to be widely considered reliable. Thus, to advance system-level design and rating, a 1/5-scale slab-on-steel girder bridge was tested to ultimate capacity and then analytically modeled. The test demonstrated the significant reserve capacity of the steel girders, and the response of the specimen was governed by the degradation of the reinforced-concrete deck. To accurately capture the response of the specimen in an analytical model, the degradation of the deck and other key features of the specimen were modeled by using a dynamic analysis algorithm in a commercially available finite-element analysis program ABAQUS.  相似文献   

2.
Over the past years, with increasing traffic volumes and higher wheel loads, fatigue damage in steel parts of typical orthotropic steel bridge decks has been experienced on heavily trafficked routes. A demand exists to find a durable system to increase the fatigue safety of orthotropic steel bridge decks. A solution might be to enhance the stiffness of the traditional orthotropic bridge deck by using a cement-based overlay. In this paper, an orthotropic steel bridge deck stiffened with a cement-based overlay is analyzed. The analysis is based on nonlinear fracture mechanics, and utilizes the finite-element method. The stiffness of the steel deck reinforced with an overlay depends highly on the composite action. The composite action is closely related to cracking of the overlay and interfacial cracking between the overlay and underlying steel plate (debonding). As an example, a real size structure, the Far? bridges located in Denmark, are analyzed. The steel box girders of the Far? bridges spans 80?m, and have a depth of 3.5?m, and a width of 19.5?m. The focus of the present study is the top part of the steel box girders, which is constructed as an orthotropic deck plate. Numerous factors can influence the cracking behavior of the cement-based overlay system. Both mechanical and environmental loading have to be considered, and effects such as shrinkage, temperature gradients, and traffic loading are taken into account. The performance of four overlay materials are investigated in terms of crack widths. Furthermore, the analysis shows that debonding is initiated for a certain crack width in the overlay. The load level where cracking and debonding is initiated depends on the stress-crack opening relationship of the material.  相似文献   

3.
For the construction of composite steel-concrete decks of cable-stayed bridges, methods of erection and analysis have to be applied that, upon completion of the deck, accurately yield the prescribed dead load configuration of the deck regarding geometry and forces. During deck erection, no unwanted bending moments should be locked into the composite sections when the concrete slab is connected to the steel substructure. Such locked-in moments would bend the deck, cause concrete creep that is difficult to predict, and introduce the risk of deviations from the desired deck alignment and the corresponding distribution of forces. This paper presents a simple and practical method of erection and erection analysis for composite decks with precast concrete slabs. A two-step tensioning procedure of the stay cables is proposed that minimizes the effects of unwanted locked-in moments, making it easy to predict the geometry of the erection stages and to yield the desired dead load configuration of the deck. The method was successfully applied for the erection of the Ting Kau bridge in Hong Kong, a cable-stayed bridge of 1,200 m in length having a composite deck with a precast deck slab.  相似文献   

4.
The objective of this study is to investigate the stability characteristics of box-girder cable-stayed bridges by three-dimensional finite-element methods. Cable-stayed bridges have many design parameters, because they have a lot of redundancies, especially for long-span bridges. Cable-stayed bridges exhibit several nonlinear behaviors concurrently under normal design loads because of large displacements; the interaction among the pylons, the stayed cables, and the bridge deck; the strong axial and lateral forces acting on the bridge deck and pylons; and cable nonlinearity. A typical two-lane, three-span, steel box-girder cable-stayed bridge superstructure was selected for this paper. The numerical results indicate that, if the ratio of the main span length with respect to the total span length, L1∕L, is small, the structure usually has a higher critical load. If the ratio Ip∕Ib increases, the critical load of the bridge decreases, in which Ip is the moment of inertia of the pylon and Ib is the moment of inertia of the bridge deck. When the ratio Ip∕Ib is greater than 10.0, the decrement becomes insignificant. For cable arrangements, bridges supported by a harp-type cable arrangement are the better design than bridges supported by a fan-type cable arrangement on buckling analysis. The numerical results also indicate that use of either A-type or H-type pylons does not significantly affect the critical load of this type of structure. In order to make the numerical results useful, the buckling loads have been nondimensionalized and presented in both tabular and graphical forms.  相似文献   

5.
During the last three decades, cable-stayed bridges have proven to be first-class structures providing vital transport links. Together with the construction process, erection procedure, and site conditions, the choice of material for the deck is a principal factor in the overall cost of construction. The effects of variable long-span bridge loads on the design of steel, composite, and concrete decks are investigated. Recent American and British long-span bridge loads have been used that are based on direct observations of modern traffic conditions. The three-dimensional finite-element models prepared for the study are based on the geometric and material properties of the Quincy Bayview cable-stayed bridge. Many cable arrangements are considered for the studied concrete, composite, and steel decks. A nonlinear analysis of the cable-stayed bridge models is carried out. The results of the different deck materials are compared. It is shown that the choice of material for the deck can be greatly affected by the distribution of stays and by the intensity of the live load adopted.  相似文献   

6.
The sandwich plate system (SPS) is a relatively new bridge deck system that consists of steel face plates bonded to a rigid polyurethane core. The decks are thin, lightweight, and modular in design and can be tailored to numerous applications. This system provides an excellent alternative for the rapid construction and rehabilitation of bridge decks. With any new system, there exists some uncertainty in the design procedures as a result of the limited population for comparison. This paper presents the results of a finite-element parametric investigation of the lateral load distribution characteristics of SPS bridges. The parametric study primarily focuses on the influence of deck thickness on distribution behavior as compared to conventional reinforced concrete decks. Results from the study demonstrate that the inherent flexibility of a thin SPS deck yields larger distribution factors (up to 20%) than a typical reinforced concrete deck, but these distribution factors can still be conservatively estimated with current AASHTO LRFD methods. Additional comparisons indicate that the distribution behavior of SPS bridges can also be estimated with the equations proposed by the NCHRP 12-62 project.  相似文献   

7.
8.
The design of a deck-and-stringer bridge system is usually reduced to the analysis of a T-beam section, loaded by concentrated loads corresponding to an equivalent fraction of the applied truck load. This equivalent load is defined by wheel load–distribution factors, which approximate the overall behavior of the bridge superstructure. In this paper, a one-term approximation of a macroflexibility series solution including deformations for fiber-reinforced polymer (FRP) deck-and-stringer orthotropic bridge systems, is used to develop explicit expressions for symmetric and asymmetric load distribution factors. It is significant that the equations presented herein include important parameters that represent, as accurately as possible, the response characteristics of the super structure, such as the geometry and material properties of the FRP deck and stringers, bridge aspect ratio, and number and spacing of stringers. As an illustration in actual design applications, the formulation presented in this paper is used to develop an analytical method for FRP deck-and-stringer bridge systems, and the method is verified by predicting the response of an all FRP model bridge in the lab and an FRP deck on steel stringers in the field. The results of the present formulation compare well with experimental lab and field results. The simplified analysis presented in this paper can be used with sufficient accuracy for the design of composite FRP deck on stringers bridges.  相似文献   

9.
Currently, estimations of the crack width in the deck slab of bridges given by codes of practice are based on either theoretical or empirical approaches considering mainly the monotonic loading behavior. However, cracking in reinforced tensile members is highly influenced by the loading history (including both the loading and unloading processes) because of the irreversible nonlinear behavior of bond and of tensile response of concrete, resulting into residual cracks of non-negligible width. This paper investigates the influence of this phenomenon and presents a physical model describing it. An analytical model is developed and its results are compared to various tests with good agreement. Finally, a simple design formula is derived and recommendations for its application to practical cases are proposed.  相似文献   

10.
Glass fiber-reinforced polymer (GFRP) bridge deck systems offer an attractive alternative to concrete decks, particularly for bridge rehabilitation projects. Current design practice treats GFRP deck systems in a manner similar to concrete decks, but the results of this study indicate that this approach may lead to nonconservative bridge girder designs. Results from a number of in situ load tests of three steel girder bridges having the same GFRP deck system are used to determine the degree of composite action that may be developed and the transverse distribution of wheel loads that may be assumed for such structures. Results from this work indicate that appropriately conservative design values may be found by assuming no composite action between a GFRP deck and steel girder and using the lever rule to determine transverse load distribution. Additionally, when used to replace an existing concrete deck, the lighter GFRP deck will likely result in lower total stresses in the supporting girders, although, due to the decreased effective width and increased distribution factors, the live-load-induced stress range is likely to be increased. Thus, existing fatigue-prone details may become a concern and require additional attention in design.  相似文献   

11.
Modern highway bridges are often subject to tight geometric restrictions and, in many cases, must be built in curved alignment. These bridges may have a cross section in the form of a multiple steel box girder composite with a concrete deck slab. This type of cross section is one of the most suitable for resisting the torsional, distortional, and warping effects induced by the bridge’s curvature. Current design practice in North America does not specifically deal with shear distribution in horizontally curved composite multiple steel box girder bridges. In this paper an extensive parametric study, using an experimentally calibrated finite-element model, is presented, in which simply supported straight and curved prototype bridges are analyzed to determine their shear distribution characteristics under dead load and under AASHTO live loadings. The parameters considered in this study are span length, number of steel boxes, number of traffic lanes, bridge aspect ratio, degree of curvature, and number and stiffness of cross bracings and of top-chord systems. Results from tests on five box girder bridge models verify the finite-element model. Based on the results from the parametric study simple empirical formulas for maximum shears (reactions) are developed that are suitable for the design office. A comparison is made with AASHTO and CHBDC formulas for straight bridges. An illustrative example of the design is presented.  相似文献   

12.
A stress ribbon bridge is a very slender structure in which the deck hangs in a suspended cablelike form. The structural response of this kind of structure is complex because of the combined effects of geometric nonlinearity, prestressing, and time-dependent materials behavior, and it has not been fully presented yet. However, since the introduction of this new structural type in the 1960s, a considerable number of stress ribbon bridges have been built. The structural behavior of prestressed concrete stress ribbon bridges is presented emphasizing the geometrical nonlinear character of the equations and the effects of creep and shrinkage of concrete. Analytical equations are integrated for the particular case of a built-in stress ribbon bridge, allowing for the determination of the effects of posttensioning, evenly distributed live load, and temperature variation. Expressions are given for the calculation of the vibration frequencies. A preliminary design of an 80-m built-in stress ribbon bridge is finally worked out based on the presented formulation.  相似文献   

13.
Fiber-reinforced polymer (FRP) composite materials are increasingly making their way into civil engineering applications. To reduce the self-weight and also achieve the necessary stiffness, sandwich panels are commonly used for FRP bridge decks. However, due to the geometric complexity of the FRP sandwich deck, convenient analysis and design methods for FRP bridge deck have not been developed. The present study aims at developing equivalent properties for a complicated sandwich panel configuration using finite-element modeling techniques. With equivalent properties, the hollowed sandwich panel can be transformed into an equivalent solid orthotropic plate, based on which deflection limits can be evaluated and designed. A procedure for the in-plane axial properties of the sandwich core has first been developed, followed by developing the out-of-plane panel properties for bending behavior of the panel. An application is made in the investigation of the stiffness contribution of wearing surface to the total stiffness of bridges with FRP panels. The wearing surface contribution is not usually accounted for in a typical design of bridges with traditional deck systems.  相似文献   

14.
In bridge engineering, the three-dimensional behavior of a bridge system is usually reduced to the analysis of a T-beam section, loaded by an equivalent fraction of the applied live load, which is called the live load distribution factor (LDF). The LDF is defined in the both the AASHTO Standard Specifications and the LRFD Specifications primarily for concrete slabs and has inherent applicable limitations. This paper provides explicit formulas using series solutions for LDF of orthotropic bridge decks, applicable to various materials but intended for fiber-reinforced polymer (FRP) decks. The present formulation considers important parameters that represent the response characteristics of the structure that are often omitted or limited in the AASHTO Specifications. A one-term series solution is proposed based on the macroflexibility approach, in which the bridge system is simplified into two major components, deck and stringers. The governing equations for the two components are obtained separately, and the deflections and interaction forces are solved by ensuring displacement compatibility at stringer lines. The LDF is calculated as the ratio of the single stringer interaction force to the summation of total stringer interaction forces. To verify this solution, a finite-element (FE) parametric study is conducted on 66 simply supported concrete slab-on-steel girder bridges. The results from the series solution correlates well with the FE results. It is also illustrated that the series solution can be applied to predict LDF for FRP deck-on-steel girder bridges, by favorable comparisons among the analytical, FE, and testing results for a one-third-scale bridge model. The scale test specimen consists of an FRP sandwich deck attached to steel stringers by a mechanical connector. The series solution is further used to obtain multiple regression functions for the LDF in terms of nondimensional variables, which can be used for simplified design purposes.  相似文献   

15.
Redecking operations executed on urban bridges that experience large traffic volumes frequently require carefully orchestrated construction sequences carried out during times of nonpeak traffic. In such a construction environment, only bridge deck options that exhibit a high degree of modularity in conjunction with ease of installation are considered as viable options for a given redecking operation. As a further requirement, the deck installation must also be expected to perform essentially trouble free, with minimal maintenance, for very long periods of time in extremely harsh environments. The present research investigates the behavior of two new deck splice details for use in bridge applications involving precast concrete-filled steel grid deck panels. The research is primarily experimental in nature and is carried out using full-scale deck panel specimens. However, in an effort to better understand the experimental results, 3D finite-element models of the deck specimens are also constructed and studied. This paper summarizes the results from this experimental and analytical program of study.  相似文献   

16.
A three-dimensional dynamic finite element model is established for the Tsing Ma long suspension Bridge in Hong Kong. The two bridge towers made up of reinforced concrete are modeled by three-dimensional Timoshenko beam elements with rigid arms at the connections between columns and beams. The cables and suspenders are modeled by cable elements accounting for geometric nonlinearity due to cable tension. The hybrid steel deck is represented by a single beam with equivalent cross-sectional properties determined by detailed finite element analyses of sectional models. The modal analysis is then performed to determine natural frequencies and mode shapes of lateral, vertical, torsional, longitudinal, and coupled vibrations of the bridge. The results show that the natural frequencies of the bridge are very closely spaced; the first 40 natural frequencies range from 0.068 to 0.616 Hz only. The computed normal modes indicate interactions between the main span and side span, and between the deck, cables, and towers. Significant coupling between torsional and lateral modes is also observed. The numerical results are in excellent agreement with the measured first 18 natural frequencies and mode shapes. The established dynamic model and computed dynamic characteristics can serve further studies on a long-term monitoring system and aerodynamic analysis of the bridge.  相似文献   

17.
Continuous span multibeam steel bridges are common along the state and interstate highways. The top flange of the beams is typically braced against lateral movement by the deck slab, and in many bridges the cross section is stepped at discrete points along the span. Design equations for lateral–torsional buckling (LTB) resistance in the American Association of State Highway and Transportation Officials “Load and resistance factor design bridge design specifications” are for prismatic beams and ignore the lateral restraint provided by the bridge deck. A new design equation is proposed that can be applied to I-shaped stepped beams with continuous top flange lateral bracing. By including the effects of the change in cross section size and the continuous top flange bracing, the calculated LTB resistance is significantly increased. Critical bending moment values from the proposed equation are compared to values from finite element method buckling analyses. The new equation is sufficiently accurate for use in design and in the evaluation of existing bridges.  相似文献   

18.
No appropriate provisions from either AASHTO Standard (2002) or AASHTO LRFD (2004) bridge design specifications are available for the design of fiber-reinforced polymer (FRP)-deck-on-steel-superstructure bridges. In this research, a parametric study using the finite-element method (FEM) is conducted to examine two design issues concerning the design of FRP-deck-on-steel-superstructure bridges, namely deck relative deflection and load distribution factor (LDF). Results show that the strip method specified in AASHTO LRFD specification as an approximate method of analysis, can also be applied to FRP decks as a practical method. However, different strip width equations have to be determined by either FEM or experimental methods for different types of FRP decks. In this study, one such equation has been derived for the Strongwell deck. In addition, both FEM results and experimental measurements show that the AASHTO LDF equations for glued laminated timber decks on steel stringers provide good estimations of LDF for FRP-deck-on-steel-superstructure bridges. Finally, it is found that the lever rule can be used as an appropriately conservative design method to predict the LDF of FRP-deck-on-steel-superstructure bridges.  相似文献   

19.
Cables instead of interval piers support cable-stayed bridges, and the bridge deck is subjected to strong axial forces due to the horizontal components of cable reactions. The structural behavior of a bridge deck becomes nonlinear because of the axial forces, large deflection, and nonlinear behavior of the cables and the large deformation of the pylons as well as their interactions. The locations and amplitude of axial forces acting on the bridge deck may depend on the number of cables. Agrawal indicated that the maximum cable tension decreases rapidly with the increase in the number of cables. This paper investigates the stability analysis of cable-stayed bridges and considers cable-stayed bridges with geometry similar to those proposed in Agrawal's paper. A digital computer and numerical analysis are used to examine 2D finite element models of these bridges. The eigen buckling analysis has been applied to find the minimum critical loads of the cable-stayed bridges. The numerical results indicate that the total cumulative axial forces acting on the bridge girder increase as the number of cables increases, yet because the bridge deck is subjected to strong axial forces, the critical load of the bridges decreases. Increasing the number of cables may not increase the critical load on buckling analysis of this type of bridge. The fundamental critical loads increase if the ratio of Ip∕Ib increases until the ratio reaches the optimum ratio. If the ratio of Ip∕Ib is greater than the optimum ratio, depending on the geometry of an individual bridge, the fundamental critical load decreases for all the types of bridges considered in this paper. In order to make the results useful, they have been normalized and represented in graphical form.  相似文献   

20.
Horizontally curved, steel girder bridges are often used in our modern infrastructural system. The curve in the bridge allows for a smother transition for traffic, which creates better road travel. However, some of the disadvantages of horizontally curved bridges are that they are more difficult to analyze, design, and sometimes construct in comparison to conventional straight bridges. This study focuses on a three-span, curved steel I-girder bridge which was tested under three boundary condition states to determine it’s response to live load. The measured live-load strains were used to calibrate a finite-element model. The finite-element design moments and distribution factors for the three condition states were then compared with the results based on the V-load method. These different boundary conditions provided the researchers a unique opportunity to evaluate the impact that these changes had on the bridges behavior. It was found that while the V-load method produced positive bending moments that were close to the finite-element moments for some of the girders, this was a result of the V-load moment being unconservative and the distribution factor being conservative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号