首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tungsten has been deposited in a low pressure chemical vapor deposition (LPCVD) system by silicon reduction of WF6. Hydrogen passivation of the silicon was found essential to inhibit native oxide formation on the silicon. A self-limiting W thickness of 100 nm was achieved at a deposition temperature of 440 °C. A typical layer sheet resistance of 2 / was obtained. Layers deposited at higher temperature yielded greater thickness, but showed the inclusion of higher resistivity phase W.WSi2 also observed, indicating solid phase reaction between the silicon and the deposited W. A reduced self-limiting thickness of W was observed when heavily doped single-crystal substrates were employed. This reduction in thickness was also observed when polycrystalline samples were employed.  相似文献   

2.
The deposition of tungsten by silane reduction of WF6 was investigated to determine the effect of the deposition chemistry on the layer properties. The influence of the deposition chemistry on the titanium adhesion layer was also investigated. To perform a direct comparison of the effect of the deposition parameters on the layer properties layers of equal thickness were deposited. In order to do this the deposition rates first had to be established experimentally. When the SiH4WF6 ratio was maintained constant at 1 and the deposition temperature increased the resistivity of the layers decreases, and the roughness increased significantly. When the temperature was maintained constant at 450 °C and the SiH4WF6 ratio was varied, it was found that the resistivity remained constant until the tungsten transformed to beta phase tungsten. At this transformation point the stress of the deposited layer and the roughness were seen to decrease significantly. It was found when the correct chemistry was applied at deposition temperatures up to 400 °C the initial reaction between the WF6 and the Ti could be eliminated or reduced.  相似文献   

3.
We investigated the structural changes in tungsten wire heated to 1800 °C in SiH4/CH4/H2/N2 atmosphere and the effect of the aging tungsten wire on the properties of N-doped hydrogenated nanocrystalline cubic silicon carbide (nc-3C-SiC:H) thin films. The aged tungsten wire had two parts: hot parts of the middle of the wire and relatively cold parts connected to clamps. Tungsten carbide (W2C) layer formed in the wire of the hot parts, while crystalline silicon and cubic silicon carbide (c-Si/3C-SiC) layer deposited on the wire of the cold parts. N-doped nc-3C-SiC:H thin films were deposited for 5 min (thickness: ~ 30 nm) after the tungsten wire was heated under the same condition as during the film deposition for given times (exposure time). No changes in the structural, electrical and optical properties of the nc-3C-SiC:H thin films were observed for the exposure time up to 450 min.  相似文献   

4.
Tungsten nitride carbide (WNxCy) thin films were deposited by chemical vapor deposition using the dimethylhydrazido (2) tungsten complex (CH3CN)Cl4W(NNMe2) (1) in benzonitrile with H2 as a co-reactant in the temperature range 300 to 700 °C. Films were characterized using X-ray diffraction (XRD), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy and four-point probe to determine film crystallinity, composition, atomic bonding, and electrical resistivity, respectively. The lowest temperature at which growth was observed from 1 was 300 °C. For deposition between 300 and 650 °C, AES measurements indicated the presence of W, C, N, and O in the deposited film. The films deposited below 550 °C were amorphous, while those deposited at and above 550 °C were nano-crystalline (average grain size < 70 Å). The films exhibited their lowest resistivity of 840 µΩ-cm for deposition at 300 °C. WNxCy films were tested for diffusion barrier quality by sputter coating the film with Cu, annealing the Cu/WNxCy/Si stack in vacuum, and performing AES depth profile and XRD measurement to detect evidence of copper diffusion. Films deposited at 350 and 400 °C (50 and 60 nm thickness, respectively) were able to prevent bulk Cu transport after vacuum annealing at 500 °C for 30 min.  相似文献   

5.
We investigated amorphous silicon carbide (a-SiC:H) thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) as protective coatings for harsh environment applications. The influence of the deposition parameters on the film properties was studied. Stoichiometric films with a low tensile stress after annealing (< 50 MPa) were obtained with optimized parameters. The stability of a protective coating consisting of a PECVD amorphous silicon oxide layer (a-SiOx) and of an a-SiC:H layer was investigated through various aging experiments including annealing at high temperatures, autoclave testing and temperature cycling in air/water vapor environment. A platinum-based high-temperature metallization scheme deposited on oxidized Si substrates was used as a test vehicle. The a-SiOx/a-SiC:H stack showed the best performance when compared to standard passivation materials as amorphous silicon oxide or silicon nitride coatings.  相似文献   

6.
Tungsten oxide films have been successfully fabricated from tungsten oxychloride (WOCl4) precursor by using plasma enhanced vapor deposition (PECVD) technique. The films were deposited onto silicon substrates and ceramic tubes maintained at 100°C under a constant operating pressure of He-O2 gas mixtures. The compositions and the structures of the thin films have been investigated by means of anaysis methods, such as XRD, XPS, UV and IR. The as-deposited WO3 thin films were amorphous state and became crystalline after annealing above 400°C. The surface analysis of the films indicates that stoichiometry O/W is 2.77 : 1. The gas sensing measurements of the WO3 thin film sensors indicate that these sensors have a high sensitivity, excellent selectivity and quick response behavior to NO2.  相似文献   

7.
研究了三种方法制备的氮化硅薄膜的组成、表面结构、热氧化稳定性以及抗离子束损伤等性能。研究发现APCVD法制备氮化硅薄膜的Si3N4含量最高,PRSD法制备的薄膜次之,而PECVD法制备的薄膜Si3N4含量最低。在PRSD薄膜中没有N-H键存在,仅有少量的Si-H键存在,薄膜的热氧化稳定性和抗离子束损伤性能最好。APCVD薄膜中含有少量的N-H和Si-H键,虽然膜层的热稳定性很好,但由于膜层具有较多的缺陷,因此其抗氧化性较差,抗离子束损伤性能也不好。对于PECVD薄膜,由于其形成温度较低,膜层中含有大量的N-H和Si-H键,因此膜层的热稳定性和抗离子束损伤性能最差。此外,还发现XPS获得的N/Si原子比和膜层的真实成分校一致,而RBS和AES由于离子束损伤效应,其结果偏低。氮化硅薄膜热稳定性差和离子束损伤的本质均因氯化硅的脱氮分解。热氧化的本质是膜层中自由硅和气氛中残余氧的氧化反应。  相似文献   

8.
The n-type doped silicon thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) technique at high and low H2 dilutions. High H2 dilution resulted in n+ nanocrystalline silicon films (n+ nc-Si:H) with the lower resistivity (ρ ∼0.7 Ω cm) compared to that of doped amorphous silicon films (∼900 Ω cm) grown at low H2 dilution. The change of the lateral ρ of n+ nc-Si:H films was measured by reducing the film thickness via gradual reactive ion etching. The ρ values rise below a critical film thickness, indicating the presence of the disordered and less conductive incubation layer. The 45 nm thick n+ nc-Si:H films were deposited in the nc-Si:H thin film transistor (TFT) at different RF powers, and the optimum RF power for the lowest resistivity (∼92 Ω cm) and incubation layer was determined. On the other hand, several deposition parameters of PECVD grown amorphous silicon nitride (a-SiNx:H) thin films were changed to optimize low leakage current through the TFT gate dielectric. Increase in NH3/SiH4 gas flow ratio was found to improve the insulating property and to change the optical/structural characteristics of a-SiNx:H film. Having lowest leakage currents, two a-SiNx:H films with NH3/SiH4 ratios of ∼19 and ∼28 were used as a gate dielectric in nc-Si:H TFTs. The TFT deposited with the NH3/SiH4∼19 ratio showed higher device performance than the TFT containing a-SiNx:H with the NH3/SiH4∼28 ratio. This was correlated with the N−H/Si−H bond concentration ratio optimized for the TFT application.  相似文献   

9.
Tungsten monocarbide was synthesized by Self-Propagating High-Temperature Synthesis. A SHS technique was developed in this work for W-C system characterized by a low adiabatic combustion temperature of 1000 K. Samples were synthesized by in combustion wave propagating along compacts of elemental tungsten, carbon and a highly exothermal mixture [Mg + (-C2F4-)n] as an activative additive under argon atomsphere of 1 atm. A quite high conversion rate was achieved at a combustion temperature of 2109 K. It is shown that in the presence of a small amount of (about 10 wt.%) the additive mixture acquires the capacity to burn and sustain the combustion front wave propagating. The lattic of tungsten monocarbide obtained was hexagonal and its particle size was 1 2 m. In the final product, MgF2 and asmall amount of W2C, both byproducts, were completely removed by acidic leaching. The purity of the tungsten monocarbide was 99% after leaching.  相似文献   

10.
Indium-tungsten-oxide (IWO) films were prepared by dc magnetron sputtering at ambient substrate temperature (Ts). Characteristics of the films were compared with those of In2O3–SnO2 (ITO) thin films prepared under the same condition. The sputter-deposited IWO films have entirely amorphous structure with an average transmittance of over 85% in the visible range and exhibit a minimum resistivity of 3.2 × 10–4cm at W content [W/(In + W)] of 0.57 at.%. An in-situ heating X-ray diffraction measurement have shown that the crystallization temperature of IWO films is higher than those of ITO films (150–160C) and increases with increasing W content. This enabled a smooth amorphous surface of IWO films as compared with a rough surface of partially crystallized ITO films as revealed by an atomic force microscopy. IWO films are useful for transparent electrode of organic light emitting diode and polymer LCDs because of the low resistivity, high transparency and smooth surface obtainable by the conventional dc magnetron sputtering at room temperature.  相似文献   

11.
Tungsten silicide films formed via furnace annealing were studied. The tungsten layers were deposited either by evaporation or by r.f. sputtering onto Si(100) substrates as well as onto silicon layers deposited in situ. Tungsten deposited at room temperature yields poor silicides owing to the lack of permeability at the interface with silicon. This as well as the formation of voids in the substrate are discussed. Deposition onto substrates heated to 500 °C, however, always allows the formation of a silicide during subsequent annealing.  相似文献   

12.
Thin active layers were deposited by the pulsed laser deposition (PLD) method from tin dioxide and tin acetylacetonate targets. The deposition was carried out employing an excimer KrF laser. The structure and parameters of the deposited layers were studied in connection with gas sensor applications. The influence of Ni dopant and Pd catalyst was investigated, employing PLD technology in order to introduce dopants as a multilayered structure. The properties of these layers were studied by Fourier transform infrared (FTIR), and X-ray photoelectron (XPS) spectroscopies and by measurement of their d.c. resistance. Under reducing gases the resistance of Ni-doped tin dioxide with a Pd catalyst layer decreases by 3 orders and the resistance of tin acetylacetonate with a Pd catalyst by 2 orders (synthetic air versus 1000 ppm H2. Due to this, such layers are suitable as the active layers of gas sensors.  相似文献   

13.
Tungsten oxide was successfully deposited on the surface of copper powder and the thickness of coating layer was dependent on deposition time. Because a spontaneous reaction occurred on the interface between copper and tungsten-peroxo electrolyte, there was a maximum thickness that could be obtained, as confirmed from XRD and EDX results. Mesoporous tungsten oxide was also deposited using SDS as a structure directing agent. As-synthesized tungsten oxide was amorphous and, after calcination at 450 °C, crystallized tungsten oxide was produced. Compared to pure tungsten oxide, the tungsten oxide coated copper oxide showed enhanced absorption in the visible region.  相似文献   

14.
Tantalum oxide film formation by plasma-enhanced chemical vapour deposition (PECVD) using TaCl5 as a source material was examined. The effects of deposition temperature on the formation, structure and electric properties of the Ta2O5 film were investigated for Al/Ta2O5/ p-Si (MTS) capacitors. The deposition rate and refractive index increased with increasing deposition temperature. It was found that the structure of Ta2O5 deposited by PECVD was amorphous as-deposited. However, crystalline -Ta2O5 of hexagonal structure was formed by a 700 °C, 1 h heat treatment in argon. Capacitance and relative dielectric constant of the PECVD Ta2O5 were found to be 2.54 fF m–2 and 23.5, respectively. The PECVD films obtained in this study have higher dielectric constants and remarkably better general film characteristics than those obtained by other deposition methods.  相似文献   

15.
ZnSe layers have been grown by a low temperature (65 °C) electrochemical deposition technique in an aqueous medium. The resulting thin films have been characterized using X-ray diffraction (XRD) and a photoelectrochemical (PEC) cell for determination of the bulk properties and electrical conductivity type. XRD patterns indicate the growth of ZnSe layers with (1 1 1) as the preferred orientation. PEC studies show p-type semiconducting properties for the as deposited layers and n-type ZnSe can be produced by appropriate doping. Annealing at 250 °C for 15 min improves the crystallinity of the layers and the photoresponse of the ZnSe/electrolyte junction. © 1998 Kluwer Academic Publishers  相似文献   

16.
A barrier structure consisting of silicon oxide and silicon nitride films was deposited via plasma-enhanced chemical vapor deposition (PECVD) for the encapsulation of polymer solar cells (PSCs). The total concentration of the solution and the ratio of P3HT and PCBM on the performance of polymer solar cells were studied by UV-Vis absorption spectroscopy, atomic force microscopy and photocurrent measurement. Base on these measurements, there is a compromise between light absorption and phase separation with increasing blend concentration. The PSCs were annealed at 80, 100, 120 and 140 °C for 10-60 min to investigate the thermal effects and to estimate the best deposition temperature of the barrier layers. Nevertheless, the devices with the encapsulation of barrier layers had relatively low power conversion efficiencies (PCE) of 0.98% comparing to the devices heated in the PECVD system (1.57%) at the same condition of 80 °C for 45 min due to the plasma damage during the film deposition process. After inserting a 5-nm TiOx layer between Al/barrier structure and active layer against the plasma damage, the annealed devices presented an average PCE of 2.26% and demonstrated over 50% of their initial value after constant exposure to ambient atmosphere and sunlight for 1500 h.  相似文献   

17.
Pyrosol deposition of fluorine-doped tin dioxide thin films   总被引:2,自引:0,他引:2  
Fluorine-doped tin dioxide (SnO2F) films were deposited from a tin tetrachloride solution in methanol utilizing a pyrosol deposition process. It is shown from thermodynamic calculations that the atmosphere during deposition is oxygen-rich and also suggested that chlorine and hydrogen chloride, which are produced during the deposition reaction, influence crystal growth. Detailed electrical, optical and structural properties of the material with respect to varying film thickness and substrate temperature are presented and discussed. Resistivity of the films deposited at 450 °C decreased from 6×10–4 to 2×10–4 cm, while the mobility increased from 14 to 45 cm2V–1s–1, respectively, when the film thickness was varied from 100 to 1650 nm. The carrier concentration was relatively unchanged for film thicknesses higher than 200 nm. Optimized SnO2F films (600 nm) having a resistivity of 6×10–4 cm, a carrier mobility of 20 cm2V–1s–1, a carrier concentration of 8×1020 cm–3 and a transmittance in excess of 80% are quite suitable as electrodes for amorphous silicon solar cells.  相似文献   

18.
We obtained SiC coating layers on a graphite substrate using hexachlorodisilane (Si2Cl6, boiling point 144° C) as a silicon source and propane as a carbon source. We examined the deposition conditions, contents of carbon, silicon and chlorine in the deposits, and the microhardness. Mirror-like amorphous silicon layers were deposited in the reaction temperature range 500 to 630° C. well-formed silicon carbide layers with good adherency to the substrate were obtained above 850° C. The lowest deposition temperature of SiC was estimated to be 750 to 800° C. The Vickers microhardness of the SiC layer was about 3800 kg mm–2 at room temperature and 2150 kg mm–2 at 1000° C.  相似文献   

19.
Amorphous SnOx films were deposited by ion-beam sputtering on sintered alumina substrates. Amorphous film sensors were prepared by annealing the films at 300° C for 2 h in air. The thickness dependence of resistivity and hydrogen gas sensitivity were measured at 150° C over the thickness range 1 to 700 nm. A resistivity maximum was observed in ultrathin films. Resistivity increased by three orders of magnitude with increasing film thickness from 0.9 to 7.4 nm and then decreased by five orders of magnitude from 7.4 to 35 nm. Ultrathin film sensors showed sensitivity maxima around a thickness of 10 nm. Sensitivity and resistivity of ultrathin films were significantly influenced by the thermal expansion coefficient and the surface state of the substrate.  相似文献   

20.
In this study, pressureless sintering of silicon carbide whisker (SiCw)-reinforced alumina composites was investigated. SiC whiskers or Al2O3 powders were coated with amorphous silica, and sintering behaviour was analysed according to the powder characteristics of the composite. It was found that amorphous silica coatings improved densification as compared with uncoated powders, because the viscous flow allows the release of any tensile stress due to differential shrinkage between the matrix and the silicon carbide whiskers. Mullite occurred when amorphous silica coatings reacted with alumina at 1500 °C, which resisted the viscous sintering of the amorphous silica coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号