首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
开展硫化锌精矿还原浸出高铁锌浸出渣高效浸铟及浸出液中铟选择性分离的研究。结果表明:在固体物料粒度74~105μm、反应温度90℃、浸出时间300 min、硫酸浓度1.4 mol/L的条件下,铟的浸出率达95%以上。采用收缩核模型对还原浸出动力学进行分析,不同条件下的浸出实验结果表明反应受穿过固体产物层的扩散控制,活化能为17.96 k J/mol,相对于硫酸浓度的反应级数为2.41。铁粉置换沉铜过程铜和砷的沉淀率均达99%以上。98%以上的铟从含高亚铁离子浓度的硫酸锌溶液中选择性分离,获得铟含量约为2.4%的富铟渣,经酸浸-萃取-电积工艺流程进一步处理后可得到纯铟。  相似文献   

2.
Physicochemical and mineralogical characteristics of an alkali leaching residue of wolframite were studied by XRD, SEM?EDS, chemical phase analysis, mineral liberation analyzer (MLA), and TG?DSC methods. Batch leaching tests, toxicity characteristic leaching procedure (TCLP) tests and Chinese standard leaching tests (CSLT) were conducted to determine the environmental mobility of toxic elements. The results show that, due to the high contents of W, Fe, Mn, Sn, and Nb, the residue is with high resource value, but the content of a toxic element, As, is also high. The existing minerals of the investigated elements mainly occur as monomer particles, but it is difficult to extract these valuable metals by conventional acid leaching due to their mineral properties. The release of As increases over time in acidic environment. The leaching concentration of all investigated harmful elements through TCLP is within the limiting value, while the leaching concentration of As through CSLT exceeds the limiting value by more than 4 times, so the residue is classified as hazardous solid waste based on the Chinese standard. A process for valuable metals recovery from this residue was proposed. Preliminary experimental results indicated that the main valuable metals could be extracted effectively.  相似文献   

3.
Chemical, physical, structural and morphological properties of zinc leaching residue were examined by the combination of various detection means such as AAS, XRF, XRD, Mössbauer spectrometry, SEM-EDS, TG-DSC, XPS and FTIR. The toxicity characteristic leaching procedure (TCLP) was used to investigate the environmental activity of zinc leaching residue for a short contact time. The phase composition analysis indicated that the zinc leaching residue mainly consists of super refined flocculent particles including zinc ferrite, sulfate and silicate. The physical structural analysis showed that it has a thermal instability and strong water absorption properties. The results of TCLP indicated that the amounts of Zn and Cd in the leaching solution exceed 40 and 90 times of limit, respectively, which demonstrate that this residue is unstable in weak acidic environment for a short contact time.  相似文献   

4.
The treatment of spent zinc-carbon batteries for the recovery of valuable metals followed by conversion to Mn−Zn ferrite has been conducted employing two-stage alkali and acid leaching and co-precipitation method. In the first stage, leaching process was carried out with 4 M NaOH, which resulted in a recovery of 63.4 %Zn and 0.1% Mn. Electrowinning of alkali leaching solution containing 12.75 g/L Zn at a current density of 0.2 A/cm2 produced Zn metal of 15 nm to 30 nm size and 99.9% purity. The second stage leaching of residue with 3 M H2SO4 and 6 vol.% H2O2 at a solid/liquid ratio of 1∶10 indicated the leaching efficiency of 98.0% Zn, 97.9% Mn and 55.2% Fe. The obtained leaching solution was finally adjusted to suitable mole ratios of Mn∶Zn∶Fe (1∶1∶4) by the addition of Zn and Fe sulfate salts followed by pH control to produce Mn−Zn ferrite powder. The characterization of the ferrite powder showed uniform nano-crystalline particles of about 20 nm size with spinel structure.  相似文献   

5.
A commercial process was developed to treat a Ca-based Mo-V residue generated in Mo processing plant. Vanadium was selectively leached using acetic acid and recovered as iron vanadate by hydro process. Process conditions for selective V leaching and iron vanadate precipitation were investigated. V recovery efficiency of 90.3% was achieved with a V content of 26.5% and an Fe content of 29% in the iron vanadate cake suitable for ferrovanadium industry. The overall Mo recovery in the whole process was 98.6%. The obtained leach residue containing 14.3% Mo with negligible impurities can be used as a feed material for the Mo production process or ferromolybdenum industry. This simple and economical process generates two product streams from a single operation and has the potential to solve a long standing problem of handling such a mixed Mo-V residue.  相似文献   

6.
1Introduction The typically traditional process for extracting indium from In-Zn concentrates includes the following steps.Firstly,ferric is removed by the method of jarosite,and indium goes into jarosite residues[1?4].In order to recovery indium from the…  相似文献   

7.
镍红土矿高压酸浸过程的金属元素浸出行为   总被引:3,自引:0,他引:3  
以镍、钴的提取为目的,研究褐铁矿型镍红土矿高压酸浸过程中各金属元素的浸出行为,探讨硫酸加入量、浸出温度、浸出时间及液固比对各金属元素浸出率的影响.实验结果表明,在优化条件下Ni、Co、Mn和Mg的浸出率分别达到97%、96%、93%和95%以上,则Fe的浸出率小于1%.对高压浸出渣的分析表明,渣中的铁和硫主要分别以赤铁...  相似文献   

8.
针对钢铁厂烧结机头灰中富含铅、铁、碳、钾、氯等多种有价元素的特点,根据氯离子与铅配位的特性,采用配位浸出的方式实现铅与铁、碳等元素的选择性分离回收。SEM-EDS、XRD等研究分析表明,烧结机头灰中铅主要以絮状的KPb2Cl5等物相吸附于铁氧化合物、硅铝酸盐和碳颗粒表面,铁主要以Fe2O3和Fe3O4物相存在。实验考察了溶液pH值、温度、氯离子浓度、浸出时间和液固比等因素对铅浸出率的影响。研究表明,在溶液pH值为3.0,浸出温度为80℃,氯离子浓度为6 mol/L,液固比(mL/g)为10:1,浸出时间为2 h的优化条件下,烧结机头灰中铅化合物与氯发生配位溶解反应生成PbCl2 i i-(i=1~4)等易溶解的络合离子,实现铅的浸出,铅浸出率为95.7%;而烧结机头灰中对钢铁冶炼有用的铁、碳、硅、铝等元素不被浸出,富集在浸出渣中,较好地实现了选择性浸出。浸出液中的铅经冷却结晶、洗涤纯化后,获得纯度为99%的氯化铅产品。  相似文献   

9.
A leaching process for base metals recovery often generates considerable amounts of impurities such as iron and arsenic into the solution. It is a challenge to separate the non-valuable metals into manageable and stable waste products for final disposal, without loosing the valuable constituents. Boliden Mineral AB has patented a two-stage precipitation process that gives a very clean iron-arsenic precipitate by a minimum of coprecipitation of base metals. The obtained product shows to have good sedimentation and filtration properties, which makes it easy to recover the iron-arsenic depleted solution by filtration and washing of the precipitate. Continuos bench scale tests have been done, showing the excellent results achieved by the two-stage precipitation process.  相似文献   

10.
The acid leaching, ferric leaching, and bioleaching of chalcocite and pyrite minerals were conducted in two sets of 3L stirred reactors. The dissolution rates of copper and iron were correlated with leaching conditions. In the acid leaching process, the dissolution rate of chalcocite was around 40wt.% while that of pyrite was less than 4%. In the ferric leaching process with high ferric concentration, only 10 wt.% of iron in pyrite was leached out at the same retention time though the copper recovery over 60 wt.% in chalcocite. For the bioleaching process, the chalcocite leaching rate was highly increased, nearly 90 wt.% of copper was leached out, and the iron dissolution of pyrite exceeded 70 wt.%. For the two minerals, the bioleaching shows the highest leaching rate compared with the acid leaching or ferric leaching. In uncontrolled bioleaching process, pyrite could be dissolved effectively. The experimental data were fitted to the shrinking core and particle model. The results show that in all the leaching tests, the chalcocite leaching was mainly controlled by diffusion, while for the pyrite leaching, chemical reaction is the main rate-determining step.  相似文献   

11.
The direct leaching kinetics of an iron-poor zinc sulfide concentrate in the tubular reactor was examined. All tests were carried out in the pilot plant. To allow the execution of hydrostatic pressure condition, the slurry with ferrous sulfate and sulfuric acid solution was filled into a vertical tube (9 m in height) and air was blown from the bottom of the reactor. The effects of initial acid concentration, temperature, particle size, initial zinc sulfate concentration, pulp density and the concentration of Fe on the leaching kinetics were investigated. Results of the kinetic analysis indicate that direct leaching of zinc sulfide concentrate follows shrinking core model (SCM). This process was controlled by a chemical reaction with the apparent activation energy of 49.7 kJ/mol. Furthermore, a semi-empirical equation is obtained, showing that the order of the iron, sulfuric acid and zinc sulfate concentrations and particle radius are 0.982, 0.189, ?0.097 and ?0.992, respectively. Analysis of the unreacted and reacted sulfide particles by SEM–EDS shows that insensitive agitation in the reactor causes detachment of the sulfur layer from the particles surface in lower than 60% Zn conversion and lixiviant in the face with sphalerite particles.  相似文献   

12.
1 INTRODUCTIONCadmiumdustisproducedfromthesecondaryroastingofroastdustofzincsulphideconcentrateinHuludaoZincPlant.AccordingtotheresultofX raydiffractionanalysis,cadmiumdusttypicallycontainszincoxide ,zincferriteandsulphidesofzinc ,cadmi umandlead .Theexis…  相似文献   

13.
研究一项针对镍钼矿用高压酸浸的方法回收镍和钼的全湿法工艺。采用该工艺避免了传统上艺焙烧镍钼矿(15%~25%s)带来的人量S02和As2O3排放,减小了对环境的污染;与现有的湿法碱浸回收钼工艺相比,本工艺存酸浸过程中回收了儿乎全部的镍和人部分的钼。在氧压环境下,几乎全部的镍和大部分的钼都进入溶液,少部分的钼留在酸浸渣中,睃浸渣进一步用碱(NaOH)浸出。在最佳的实验条件下,97%的镍和96%的钼分别被浸出。  相似文献   

14.
草酸根(ox2-)对三价铁具有强的配位能力,可用草酸配位浸出二段焙砂中包裹金的赤铁矿,提高金的回收率。考察了草酸用量、液固比、浸出温度和时间对二段焙砂中铁浸出率的影响。结果表明,用1.17倍理论量的草酸在液固比为12 mL/g时于90℃浸出2 h,铁浸出率达到75.8%以上。除铁渣进一步氰化浸出,渣中金品位为8.8 g/t,低于直接氰化浸出渣12.3 g/t的金品位。草酸浸出液主要成分为具有光催化活性的Fe(ox)+和Fe(ox)2-,可采用光催化法回收铁、再生草酸,再生的草酸可返回浸铁过程。  相似文献   

15.
锌浸出渣中重金属的环境活性和生态风险评价   总被引:4,自引:0,他引:4  
采用矿物学分析、BCR三步连续浸提、动态淋洗实验以及Hakanson潜在生态风险评价4种方法对锌浸出渣重金属的环境活性以及生态风险进行评价.结果表明,锌浸出渣中重金属的环境活性大小依次为Cd>Zn>Cu>As>Pb.废渣中主要重金属的潜在生态风险评价表明,该种废渣对环境具有很高的生态风险,单个重金属的生态危害顺序为Cd>Zn>Cu>As>Pb.Cd有很严重的生态风险,是对生态环境造成毒性的主要原因.  相似文献   

16.
It is taken as a novel prospective process to treat iron concentrate from hydrometallurgical zinc kiln slag for comprehensive utilization of valuable metals by a hydrochloric acid leaching-spray pyrolysis method. The leaching mechanism of different valuable metals was studied. The results revealed that the leaching rates of Ag, Pb, Cu, Fe, As and Zn were 99.91%, 99.25%, 95.12%, 90.15%, 87.58% and 58.15%, respectively with 6 mol/L HCl and L/S ratio of 10:1 at 60 °C for 120 min. The action of SiO2 in leaching solution was also studied. The results showed that the precipitation and settlement of SiO2(amorphous) adsorbed part of metal ions in solution, which greatly inhibited the leaching of Cu, Fe, As and Zn, so it is crucial to control the precipitation of amorphous SiO2.  相似文献   

17.
Pretreatment of high content of Si- and Al-containing cyanide tailings by water leaching to remove some impurities, such as the major impurities minerals of Si and Al, as well as its effect on Fe extraction in the water leaching process was investigated. The effects of different parameters on iron recovery were studied, and the reaction parameters were proposed as follows: sodium carbonate content of 30%, water leaching at 60 °C for 5 min, liquid/solid ratio of 15:1, and exciting current of 2 A. Under these optimal conditions, magnetic concentrate containing 59.11% total iron and a total iron recovery rate of 76.12% was obtained. In addition, the microstructure and phase transformation of the process of water leaching were studied by X-ray powder diffraction technique (XRD), Electronic image of backscattering (BEI), X-ray fluorescence (XRF), and energy dispersive spectrometry (EDS). The results indicate that the soluble compound impurities generated in the roasting process are washed out, and the dissoluble substances enter into nonmagnetic materials by water leaching, realizing the effective separation of impurities and Fe.  相似文献   

18.
Zinc silicate ore was characterized mineralogically and the results showed that zinc exists mainly as hemimorphite and smithsonite in the sample. Sulfuric acid pressure leaching of zinc silicate ore was carried out to assess the effect of particle size, sulfuric acid concentration, pressure, reaction time and temperature on the extraction of zinc and the dissolution of silica. Under the optimum conditions employed, up to 99.25% of zinc extraction and 0.20% silica dissolution are obtained. The main minerals in leaching residue are quartz and small amounts of undissolved oxide minerals of iron, lead and aluminum are associated with quartz.  相似文献   

19.
加压碱浸处理氰化浸出法回收汽车废催化剂中的贵金属   总被引:7,自引:0,他引:7  
为提高铂族金属的浸出回收率,针对前期研究提出的汽车废催化剂先经加压碱浸处理而后再加压氰化浸出铂族金属的新工艺,变动预处理反应过程各种工艺参数,考察了对后续铂族金属氰化浸出指标的影响。结果表明:预处理可打开汽车废催化剂载体对铂族金属的包裹,有利于其氰化浸出;但物料粒度过细或反应碱用量过大、温度过高、时间过长均容易形成新相重新包裹,不利于氰化试剂与铂族金属有效接触;预处理渣进一步湿磨,可消除包裹,提高氰化浸出率;在实验最佳条件下,铂族金属氰化浸出率分别可达到:Pt 96%、Pd 98%、Rh92%。  相似文献   

20.
对湿法炼锌净化渣的浸出动力学进行了研究,并探讨了硫酸浓度、反应温度、粒度等对钴、锌浸出率的影响规律。从动力学的角度分析了整个浸出过程,得到优化条件:液固比50:1(mL/g),硫酸浓度100 g/L,反应温度70°C,粒度75~80μm,反应时间20 min。在此优化条件下钴的浸出率为99.8%,锌的浸出率为91.97%。结果表明:在硫酸体系中钴的浸出符合不生成固体产物层的“未反应收缩核”模型。通过 Arrhenius 经验公式求得钴和锌表观反应活化能分别为11.693 kJ/mol和6.6894 kJ/mol,这表明浸出过程受边界层扩散控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号