首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-performance cathodes with adequate CO2 tolerance are vital for further development of intermediate-temperature solid oxide fuel cells (IT-SOFCs). However, there is always a trade-off between CO2 tolerance and oxygen reduction reaction (ORR) performance for single-phase cathodes. Here, we report a cobalt-free Ba0.6La0.4FeO3-δ-Ce0.8Sm0.2O2-δ (BLF-SDC) dual-phase cathode with excellent ORR activity and CO2 tolerance. Introducing ionic conductor Ce0.8Sm0.2O2-δ (SDC) into the Ba0.6La0.4FeO3-δ (BLF) phase can boost ORR activity due to the extended active sites and enhanced oxygen surface exchange process with a polarization resistance of 0.121 Ω cm2 for the BLF-30% SDC (weight ratio, BLF-30SDC) cathode at 700 °C. The CO2 resistance of the BLF-30SDC composite cathode outperforms BLF cathode by three times at 600 °C. This stability enhancement is owing to low CO2 adsorption of SDC, which is confirmed from thermodynamic calculation. This work indicates that dual-phase mixed conductors can be developed as highly active and stable cathodes for IT-SOFCs.  相似文献   

2.
A cobalt-free layered perovskite oxide, GdBaFe2O5+x (GBF), was investigated as a novel cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Area-specific resistance (ASR) of GBF was measured by impedance spectroscopy in a symmetrical cell. The observed ASR was as low as 0.15 Ω cm2 at 700 °C and 0.39 Ω cm2 at 650 °C, respectively. A laboratory sized Sm0.2Ce0.8O1.9 (SDC)-based tri-layer cell of NiO-SDC/SDC/GBF was tested under intermediate temperature conditions of 550-700 °C with humidified H2 (∼3% H2O) as a fuel and the static ambient air as an oxidant. A maximal power density of 861 mW cm−2 was achieved at 700 °C. The electrode polarization resistance was as low as 0.57, 0.22, 0.13 and 0.08 Ω cm2 at 550, 600, 650 and 700 °C, respectively. The experimental results indicate that the layered perovskite GBF is a promising cathode candidate for IT-SOFCs.  相似文献   

3.
A double-layer dual-composite cathode is fabricated and has an ideal cathode microstructure with large electrochemical active sites and enhanced the durability in solid oxide fuel cells (SOFCs). The insertion of a yttria-stabilized zirconia (YSZ)-rich functional layer between the electrolyte and the electrode allows for a graded transition of the YSZ phase, which enhances ionic percolation and minimizes the thermal expansion coefficient mismatch. Electrochemical measurements reveal that the double-layer composite cathode exhibits improved cathodic performance and long-term stability compared with a single-layer composite cathode. A cell with a well-controlled cathode maintains nearly constant interfacial polarization resistance during an 80 h accelerated lifetime test.  相似文献   

4.
The use of a dual-composite approach, in which both LSM and YSZ nanoparticles are placed on YSZ core particles, allows for the development of an ideal cathode microstructure with improved phase contiguity and durability for use in solid oxide fuel cells. The volume fraction of the conjugated YSZ phase plays a critical role in the optimization of the cathode microstructure for achieving good durability because it acts as an interconnecting bridge between YSZ core particles. However, the presence of excess conjugated YSZ phase interrupts the formation of sufficient triple phase boundary sites by disturbing the contacts between the LSM and YSZ phases. Impedance spectroscopy analysis and microstructural observations provide a better understanding of the influence of the composition on the electrochemical performance and durability of these dual composite cathodes.  相似文献   

5.
La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) powder was prepared by glycine–nitrate combustion method. The electrochemical properties of porous LSCF cathodes and LSCF–Gd0.1Ce0.9O1.95 (GDC) composite cathodes were evaluated at intermediate/low temperatures of 500–700 °C. The polarization resistance of pure LSCF cathode sintered at 975 °C for 2 h was 1.20 Ω cm2 at 600 °C. The good performance of pure LSCF cathode is attributed to its unique microstructure—small grain size, high porosity and large surface area. The addition of GDC to LSCF cathode further reduced the polarization resistance. The lowest polarization resistance of 0.17 Ω cm2 was achieved at 600 °C for LSCF–GDC (40:60 wt%) composite cathode. An anode-supported solid oxide fuel cell (SOFC) was prepared using LSCF–GDC (40:60 wt%) composite as cathode, GDC film (49-μm-thick) as electrolyte, and Ni–GDC (65:35 wt%) as anode. The total electrode polarization resistance was 0.27 Ω cm2 at 600 °C, which implies that LSCF–GDC (40:60 wt%) composite cathode used in the anode-supported SOFC had a polarization resistance lower than 0.27 Ω cm2 at 600 °C. The cell generated good performance with the maximum power density of 562, 422, 257 and 139 mW/cm2 at 650, 600, 550 and 500 °C, respectively.  相似文献   

6.
Low-temperature operation of solid oxide fuel cells (SOFCs) results in deterioration in electrochemical performance due to sluggish oxygen reduction reaction (ORR) at the cathode. To enhance the reaction pathway for ORR, La0.8Sr0.2MnO3 (LSM) nanofibers were fabricated by electrospinning and used for low-temperature solid oxide fuel cells operated at 600–700 °C. The morphological and structural characteristics show that the electrospun LSM nanofiber has a highly crystallized perovskite structure with a uniform elemental distribution. The average diameter of the LSM nanofiber after sintering is 380 nm. A symmetric cell of nanofiber-based LSM cathode on scandia-stabilized zirconia (SSZ) electrolyte pellet exhibits much lower area specific resistances compared to commercial LSM powder-based cathode. A single cell based on the nanofiber LSM cathode on yttrium-doped barium cerate-zirconia (BCZY) electrolyte exhibits a power density of 0.35 Wcm−2 at 600 °C, which increases to 0.85 Wcm−2 at 700 °C. The cell has an area specific resistance (ASR) of 0.46 Ωcm2 at 600 °C, which decreases to 0.07 Ωcm2 at 700 °C. The results indicate that the LSM electrode fabricated by the electrospinning process produces a nanostructured porous electrode which optimizes the microstructure and significantly enhances the ORR at the cathode of SOFCs.  相似文献   

7.
Pd-Y2O3 stabilized ZrO2 (YSZ) composite cathodes are prepared by conventional mechanical mixing and infiltration methods. In the case of infiltration, thermal decomposition and chemical reduction processes are used to form Pd particles on the YSZ scaffold. The phase structure, morphology and electrochemical performance of the Pd-YSZ composite cathodes are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and electrochemical impedance spectroscopy (EIS). The performance of mechanically mixed Pd-YSZ composite cathodes is inadequate due to significant growth and sporadical distribution of Pd particles. The 5 wt.% Pd-loaded cathode prepared by infiltration-thermal decomposition process shows the lowest polarization resistance, i.e. between 0.042 Ω cm2 and 1.5 Ω cm2 in the temperature range of 850-600 °C, benefited from the formation of nano-sized Pd particles and the presence of well connected Pd network. The effect of Pd loading on the performance of the infiltrated-thermal decomposed Pd-YSZ composite cathodes is also evaluated, 5 wt.% Pd loading results in the lowest polarization resistances.  相似文献   

8.
Nano-sized (50 nm) lanthanum strontium manganite (La0.8Sr0.2MnO3, LSM) particles are deposited on yttria-stablized zirconia (8YSZ) by synthesizing LSM particles in situ in an YSZ-dispersed solution. As the LSM content is decreased from 80 to 25 wt.%, 50 wt.% powder shows the best microstructure and phase connectivity. This composite, when used as a cathode in a button cell, also has the highest power density of 791 mW cm−2 at 800 °C and the lowest values of the cathode polarization resistance and high-frequency arc (0.315 and 0.120 Ω cm2, respectively). Initially, the low-frequency arc shows a rapid decrease as the LSM content is reduced from 80 to 60 wt.%. After this, an abrupt drop at 50 wt.% LSM content is followed by a slow decrease in the low-frequency arc with further decrease in the LSM content. The results suggest that the high-frequency arc is related to charge transfer and the low-frequency arc to the site density of the triple-phase boundary (TPB). A new parameter, the charge-transfer efficiency of the TPB site, is defined and used to explain further the observed effect of LSM content on YSZ.  相似文献   

9.
The present study was intended to investigate the performance dependence of the solid oxide fuel cells on the pore structure of the supporting cathode. The Sr-doped lanthanum manganite/yttria-stabilized zirconia electrodes with different pore structures were prepared, and their inner surfaces were modified with nano-scale Sm0.2Ce0.8O1.95-δ (SDC). The cell supported on the electrode with a straight pore structure demonstrated much higher maximum power densities than the one supported on the electrode with a tortuous pore structure, e.g., 652 vs 308 mW cm?2 at 800 °C. Impedance analysis revealed that the straight pore structure together with SDC-modified pore surface not only promoted the surface oxygen exchange, but also enhanced the transport of oxygen species to the reaction sites and conduction of oxide ions and electrons in the electrode. The ceramic cathode-supported cell survived 20 redox cycles, showing much better stability than the cermet anode-supported cell. Further research on the supporting cathode is needed to increase the power output density required for practical applications.  相似文献   

10.
Bismuth oxide based oxygen ion conductors are incorporated into (La,Sr)MnO3 (LSM), the classical cathode material for solid oxide fuel cells (SOFC), to improve the cathode performance. Yttria-stabilized bismuth oxide (YSB) is taken as an example and is impregnated into a preformed porous LSM frame, forming a highly active cathode for intermediate-temperature SOFCs (IT-SOFCs) with doped ceria electrolytes. X-ray diffraction indicates that YSB is chemically compatible with LSM at intermediate temperatures below 800 °C. The impregnated YSB particles are nanosized and are deposited on the surface of the framework. Significant performance improvement is achieved by introducing nanosized YSB into the LSM electrodes. At 600 °C, the interfacial polarization resistance under open-circuit conditions for electrodes impregnated with 50% YSB is only 1.3% of the original value for a pure LSM electrode. The resistance is further reduced dramatically when current is passed through. In addition, the YSB impregnated LSM electrodes has the highest electrochemical performance among those based on LSM. Single cell with 25% of YSB impregnated LSM cathode generates maximum power density of 300 mW cm−2 at 600 °C, indicating the promise of using LSM-based electrodes for IT-SOFC.  相似文献   

11.
(Ba0.5Sr0.5)(Fe1-xAlx)O3-δ (BSFAx, x = 0–0.2) oxides have been synthesized as novel cobalt-free cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) using a sol-gel method. The BSFAx (x = 0–0.2) materials have been characterized by X-ray diffraction and scanning electron microscopy. The electrical conductivities and electrochemical properties of the prepared samples have also been measured. At 800 °C, the conductivity drops from 15 S cm−1 to 5 S cm−1 when the doping level of aluminum is increased to 20%. The aluminum-doping concentration has important impacts on the electrochemical properties of BSFAx materials. The BSFA0.09 cathode shows a significantly lower polarization resistance (0.26 Ω cm2) and cathodic overpotential value (55 mV at the current density of 0.1 A cm−2) at 800 °C. Furthermore, an anode-supported single cell with BSFA0.09 cathode has been fabricated and operated at a temperature range from 650 to 800 °C with humidified hydrogen (∼3vol% H2O) as the fuel and the static air as the oxidant. A maximum power density of 676 mWcm−2 has been achieved at 800 °C for the single cell. We believe that BSFA0.09 is a promising cathode material for future IT-SOFCs application.  相似文献   

12.
Composite materials of Sm0.2Ce0.8O1.9 (SDC) with various Ni–Fe alloys were synthesized and evaluated as the anode for intermediate temperature solid oxide fuel cell. The performance of single cells consisting of the Ni–Fe + SDC anode, SDC buffer layer, La0.8Sr0.2Ga0.83Mg0.17O2.815 (LSGM) electrolyte, and SrCo0.8Fe0.2O3 − δ (SCF) cathode were measured in the temperature range of 600–800 °C with wet H2 as fuel. It was found that the anodic overpotentials of the different Fe–Ni compositions at 800 °C were in the following order: Ni0.8Fe0.2 < Ni0.75Fe0.25 < Ni < Ni0.7Fe0.3 < Ni0.9Fe0.1 < Ni0.95Fe0.05 < Ni0.33Fe0.67. The single cell with the Ni0.8Fe0.2 + SDC anode exhibited a maximum power density of 1.43 W cm−2 at 800 °C and 0.62 W cm−2 at 700 °C. The polarization resistance of the Ni0.8Fe0.2 + SDC anode was as low as 0.105 Ω cm2 at 800 °C under open circuit condition. A stable performance with essentially negligible increase in anode overpotential was observed during about 160 h operation of the cell with the Ni0.8Fe0.2 + SDC anode at 800 °C with a fixed current density of 1875 mA cm−2. The possible mechanism responsible for the improved electrochemical properties of the composite anodes with the Ni0.8Fe0.2 and Ni075Fe0.25 alloys was discussed.  相似文献   

13.
A high-performance solid oxide fuel cell La1−xSrxMnO3 (LSM) cathode/metallic interconnect contact material Ni1−xCoxO, added with the mixed ionic-electronic conducting Sm0.2Ce0.8O2−δ (SDC), was proposed as a novel composite cathode for proton-conducting solid oxide fuel cells (H-SOFCs) with BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) as the electrolyte. The X-ray diffraction (XRD) results indicated that the maximum doped ratio of Ni1−xCoxO was Ni0.7Co0.3O (NC3O), also shown that NC3O was chemically compatible with SDC at temperatures up to 1400 °C. The TEC of NC3O was also measured to check its thermal compatibility with other components. Laboratory-sized tri-layer cells of NiO–BZCYYb/BZCYYb/NC3O-SDC were fabricated and tested with humidified hydrogen (∼3% H2O) as fuel and static air as oxidant, respectively. A maximum power density of 204 mW cm−2 and a low interfacial polarization resistance Rp of 0.683 Ω cm2 were achieved at 700 °C. The results have indicated that the NC3O-SDC composite is a simple, stable and cost-effective cathode material for H-SOFCs.  相似文献   

14.
The calcium cobaltite (CCO) cathodes are post-treated by dipping in the hydrogen peroxide (H2O2). The electrochemical properties are investigated by the electrochemical impedance spectra (EIS) and current-voltage test in the symmetrical cell and single cell, respectively. The phase structure and morphology of the cathodes are characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The experiment results show that the mesopores are created on the surface of the cathode particles and the pore channels of the cathode are cleaned up after leaching with 10 wt % H2O2, resulting in a remarkable decreasing of the area specific resistance (e.g. only 42.5% of that for the untreated cathode at 800 °C). The single cell with treated cathode is about 2 times the peak power density of the cell with untreated cathode, signifying the post-treating method may be promising.  相似文献   

15.
Honeycomb porous LSM/YSZ composite cathodes are prepared using the breath figures (BFs) method with nontoxic and easily available water droplets as templates. They were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Experimental results indicate that 1) ambient temperature, relative humidity, and thickness of the slurry have significant influence on the morphology of porous membrane; 2) the membrane with a thickness of 35 μm prepared at 35 °C and relative humidity of 70-75% shows the lowest polarization resistance between the LSM/YSZ composite cathode and YSZ electrolyte; and 3) the honeycomb structure of composite cathodes is favorable for lowering the low-frequency resistance concerning diffusion processes at relatively low operating temperatures of 650 and 700 °C.  相似文献   

16.
A novel nano-network of Sm0.5Sr0.5CoO3−δ (SSC) is successfully fabricated as the cathodes for intermediate-temperature solid oxide fuel cells (SOFCs) operated at 500–600 °C. The cathode is composed of SSC nanowires formed from nanobeads of less than 50 nm thus exhibiting high surface area and porosity, forming straight path for oxygen ion and electron transportation, resulting in high three-phase boundaries, and consequently showing remarkably high electrode performance. An anode-supported cell with the nano-network cathode demonstrates a peak power density of 0.44 W cm−2 at 500 °C and displays exceptional performance with cell operating time. The result suggests a new direction to significantly improve the SOFC performance.  相似文献   

17.
Direct internal reforming of methanol is applied as fuel for a Ni-YSZ anode-supported solid oxide fuel cell with a flat tube based on double-sided cathodes. It achieves a power density (PD) of 0.25 W/cm2 at 0.8 V, reaching about 90% of that is fueled by H2. And the cell has been operated for more than 120 h by the direct internal reforming of methanol. The durability and apparent advantage for using humidified methanol may lead to widespread applications by direct internal reforming method for this new designed SOFC in the future.  相似文献   

18.
Seal glass plays a crucial role in solid oxide fuel cell performance and durability. In this review paper, overall composition-structure-property relations of seal glasses are discussed from bulk glass behavior, interfacial interaction, and sealing ability point of view. A seal glass should have a combination of desired thermal, chemical, mechanical, and electrical properties in order to seal cell components and stacks and prevent gas leakage. It must be stable for ∼40,000 h at 500-1000 °C in oxidizing and reducing atmospheres and withstand ∼10,000 thermal cycles between room temperature and cell operating temperature. A SrO-La2O3-Al2O3-SiO2 based seal glass shows the promise to meet all the desired thermophysical properties, long-term stability, and thermal cycling resistance. In this paper, the most recent advances in the field are discussed along with this glass. Future seal glass research directions for solid oxide fuel cells are also analyzed.  相似文献   

19.
Different types of cathode current-collecting material for anode-supported flat-tube solid oxide fuel cells are fabricated and their electrochemical properties are characterized. Current collection for the cathode is achieved by winding Ag wire and by painting different conductive pastes of Ag–Pd, Pt, La0.6Sr0.4CoO3 (LSCo), and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) on the wire. Cell performance at the initial operation time is in the order of Pt > LSCo > LSCF > Ag–Pd. On the other hand, the performance degradation rate is in the order of LSCo < LSCF < Pt < Ag–Pd. LSCo paste as a cathode current-collector shows the most stable long-term performance of 0.8 V, 300 mA cm−2 at 750 °C, even under a thermal cycle condition with heating and cooling rates of 150 °C h−1. The performance degradation of the Ag–Pd and Pt pastes is caused by increased polarization resistance due to metal particle sintering. From these results, it is concluded that a cathode current-collector composed of wound silver wire with LSCo paste is useful for anode-supported flat-tube cells as it does not experience any significant degradation during a long operation time.  相似文献   

20.
The deposition of Cr on cathode materials in solid oxide fuel cells (SOFCs) is complex and impacted by multiple factors. In this report, a mathematical model based on electrochemical Cr-poisoning mechanism is developed to investigate the correlation between gas transport and Cr deposition in porous strontium doped lanthanum manganite/yttria stabilized zirconia (LSM/YSZ) cathode. Time evolution of cathode pore size and three phase boundaries (TPBs) in different cathode regions with Cr2O3 deposition is analyzed. The distribution of local current density in the cathode, the lifetime, the concentration polarization, the activation polarization and area specific resistance of SOFC cathodes are subsequently assessed quantitatively. Three types of LSM/YSZ cathode structures with uniform, ascending and descending gradient pore-size distributions are compared. The results show that uniform pore distribution contributes to the best performance when all the cathodes own TPBs with the same initial length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号