首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background: Dental erosion is a risk factor for dental health, introduced by today's lifestyle. Topical fluoride applications in the form of varnishes and gel may lead to deposition of fluoride on enamel. Purpose: This in vitro study aimed to evaluate the effect of two fluoride varnishes and one fluoride gel on the dissolution of bovine enamel by acids. Methods: Enamel samples (72) were divided (n = 8): artificial saliva (control‐G1), Pepsi Twist® (G2), orange juice (G3), Duraphat® + Pepsi Twist® (G4), Duraphat® + orange juice (G5), Duofluorid® + Pepsi Twist® (G6), Duofluorid® + orange juice (G7), fluoride gel + Pepsi Twist® (G8), and fluoride gel + orange juice (G9). Fluoride gel was applied for 4 min and the varnishes were applied and removed after 6 h. The samples were submitted to six cycles (demineralization: Pepsi Twist® or orange juice, 10 min; remineralization: saliva, 1 h). Samples were analyzed by energy‐dispersive X‐ray fluorescence (144 line‐scanning). Results: The amount of Ca and P decreased significantly in the samples of G2 and G3, and the Ca/P ratio decreased in G3. Mineral gain (Ca) was greater in G9 samples than in G4 > G3 > G5 > G1, and (P) greater in G7 samples than in G9 > G4‐6 > G2‐3. Conclusions: The protective effect of Duofluorid® was significantly lower than fluoride gel against orange juice. The fluoride varnishes can interfere positively with the dissolution of dental enamel in the presence of acidic beverages. Fluoride gel showed the best protection level to extrinsic erosion with low costs. Microsc. Res. Tech., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The chemical compositions (organic and inorganic contents) and mechanical behaviors of the dentin of permanent and deciduous teeth were analyzed and compared using X‐ray fluorescence spectrometry (µ‐EDXRF) Fourier transform Raman spectroscopy (FT‐Raman) and a microhardness test (HD). Healthy fresh human primary and permanent molars (n = 10) were selected, The buccal surfaces facing upwards were stabilized in an acrylic plate, flattened, polished, and submitted to the µ‐EDXRF, FT‐Raman, and HD analysis. The results of the analysis were subjected to ANOVAs and Mann‐Whitney U/Student's t multiple comparisons tests. The data showed similar values for the dentin of the primary and permanent teeth in P content, organic content (amide I peak), inorganic content ( – 430 and 590), and microhardness, Nevertheless, Ca content and Ca/P weight ratio were higher, and the peak was lower in the dentin of the permanent teeth compared to primary teeth. It be concluded that despite permanent teeth showed more Ca element, both substrates showed similar behavior of chemical and physical properties.  相似文献   

3.
The purpose of this study was to compare the effects of professional tooth whitening agents containing highly concentrated hydrogen peroxide (with and without laser activation), on the enamel surface; and the potential of four different toothpastes to remineralize any alterations. The study was performed on 50 human molars, divided in two groups: treated with Opalescence® Boost and Mirawhite® Laser Bleaching. Furthermore, each group was divided into five subgroups, a control one and 4 subgroups remineralized with: Mirasensitive® hap+, Mirawhite® Gelle?, GC Tooth Mousse? and Mirafluor® C. The samples were analysed by SEM/3D‐SEM‐micrographs, SEM/EDX‐qualitative analysis and SEM/EDX‐semiquantitative analysis. The microphotographs show that both types of bleaching cause alterations: emphasized perikymata, erosions, loss of interprizmatic substance; the laser treatment is more aggressive and loss of integrity of the enamel is determined by shearing off the enamel rods. In all samples undergoing remineralization deposits were observed, those of toothpastes based on calcium phosphate technologies seem to merge with each other and cover almost the entire surface of the enamel. Loss of integrity and minerals were detected only in the line‐scans of the sample remineralized with GC Tooth Mousse?. The semiquantitative EDX analysis of individual elements in the surface layer of the enamel indicates that during tooth‐bleaching with HP statistically significant loss of Na and Mg occurs, whereas the bleaching in combination with a laser leads to statistically significant loss of Ca and P. The results undoubtedly confirm that teeth whitening procedures lead to enamel alterations. In this context, it must be noted that laser bleaching is more aggressive for dental substances. However, these changes are reversible and can be repaired by application of remineralization toothpastes.  相似文献   

4.
To investigate the morphologic, chemical and crystallographic characters of remineralized surface on initial carious enamel treated with Galla chinensis, scanning electron microscopy equipped with energy dispersive analysis spectroscopy were used, and X‐ray microdiffraction (microzone XRD) was used for the first time to analyze in situ the microzone crystallite of remineralized surface on carious enamel. Bovine sound enamel slabs were demineralized to produce initial carious lesion in vitro. Then, the lesions were exposed to a pH‐cycling regime for 12 days of remineralization. Each daily cycle included 4×1 min applications with one of the three treatments: distilled and deionized water (DDW); 1 g/L NaF; 4 g/L G. chinensis extract (GCE). After the treatments, some rod‐like deposits and many irregular prominences were found on GCE‐treated enamel surface, and the intensities of Ca and P signals showed a tendency to increase; Ca:P ratio was significantly higher than that of DDW‐treated enamel. X‐ray microdiffraction showed hydroxyapatite was still the main component of GCE‐treated enamel, and the crystallinity was increased, the crystal lattice changed gently with decreased lattice parameter a. These results indicated the potential of GCE in promoting the remineralization of initial enamel carious lesions, and supported the previous hypothesis about GCE mechanism. Combined with the anti‐bacteria and demineralization inhibition properties of GCE, the natural G. chinensis may become one more promising agent for caries prevention. SCANNING 31: 236–245, 2009. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
OBJECTIVES: To compare microleakage of three self‐etch adhesives and to analyze enamel surface morphology and interfacial morphology of resin–enamel and resin–dentin interface under scanning electron microscope (SEM). EXPERIMENTAL DESIGN: Study was conducted in 65 extracted human premolars. Class V cavities were prepared in 45 teeth and assigned to three groups (n = 15) according to three self‐etch adhesives (OptiBond All‐in‐One, iBond, and Adper Prompt L‐Pop). After restoration, 10 samples from each group were used to assess microleakage at enamel and dentin margin. Five samples from each group were used for analysis of interfacial morphology at resin–enamel and resin–dentin interface under SEM. Remaining 20 teeth were used to prepare flat enamel buccal surfaces to analyze the difference in surface morphology after treatment with three adhesives (n = 5 each) and 36% phosphoric acid treatment (n = 5). PRINCIPAL OBSERVATIONS: At enamel margin, Prompt L‐Pop depicted least leakage of all the three adhesives and also showed best interfacial adaptation under SEM. At dentin margin, OptiBond All‐in‐One showed significant less leakage than iBond and Prompt L‐Pop. On flat enamel surface, phosphoric acid produced the most retentive etching pattern when compared with the three adhesives. CONCLUSION: Prompt L‐Pop showed the best bonding effectiveness in enamel, whereas OptiBond All‐in‐One performed significantly better in dentin. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Microenergy dispersive X‐ray fluorescence (μ‐EDXRF) spectroscopy and scanning electron microscopy (SEM) were used to test the hypothesis that zirconia modified glass ionomer cement (GIC) could improve resistance to erosion‐abrasion to a greater extent than conventional cement. Bovine enamel (n = 40) and dentin (n = 40) samples were prepared with cavities, filled with one of the two restorative materials (GIC: glass‐ionomer cement or ZrGIC: zirconia‐modified GIC). Furthermore, the samples were treated with abrasion‐saliva (AS) or abrasion‐erosion cycles (AE). Erosive cycles (immersion in orange juice, three times/day for a duration of 1 min over a 5 day period) and/or abrasive challenges (electric toothbrush, three times/day for a duration of 1 min over a 5 day period) were performed. Positive mineral variation (MV%) on the enamel after erosion‐abrasion was observed for both materials (p < 0.05), whereas a negative MV% on the dentin was observed for both materials and treatments (p < 0.05). The SEM images showed clear enamel loss after erosion‐abrasion treatment and material degradation was greater in GIC_AE compared to those of the other groups. Toothbrush abrasion showed a synergistic effect with erosion on substance loss of bovine enamel, dentin, GIC, and ZrGIC restorations. Zirconia addition to the GIC powder improved the resistance to abrasive‐erosive processes. The ZrGIC materials may find application as a restorative material due to improved resistance as well as in temporary restorations and fissure sealants.  相似文献   

7.
The purpose of this study was to analyze, by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), the morphology of sealant/enamel interface after surface treatment with Biosilicate. Before pits and fissures sealing, the occlusal surfaces of 10 sound human molars were sectioned perpendicularly at the fissures in order to obtain three slices for each tooth. Slices were randomly assigned into three groups (n = 10) according to sealing protocol: Group 1‐ Acid etching + Biosilicate + glass ionomer‐based sealant (Clinpro XT Varnish, 3M ESPE); Group 2‐ Acid etching + glass ionomer‐based sealant (Clinpro XT Varnish, 3M ESPE); Group 3‐ No sealing. All slices were subjected to thermal cycling (5,000 cycles; 5–55°C; dwell time: 30s). Half of the slices from each group (n = 5) were analyzed by CLSM and the other half by SEM. Groups 1 and 2 were also submitted to EDS analysis and their data were evaluated by Two‐Way ANOVA e Tukey's test (α=5%). EDS data analysis showed higher amounts of silicon (Si) ions than calcium (Ca) ions in Group 1 (P < 0.05); Group 2 presented higher amounts (P < 0.05) of Ca ions than Si ions. It may be concluded that the use of Biosilicate for surface treatment did not affect the morphology of glass ionomer‐based sealant/enamel interfaces. Microsc. Res. Tech. 78:1062–1068, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
This experimental study aims to evaluate the radiopacity of various fiber post materials and to determine the effects of material composition as analyzed by energy‐dispersive X‐ray spectrophotometry (EDS; EDAX Team Software; EDAX, Inc., Mahwah, NJ) on radiopacity. Five specimens of seven fiber post materials with 2‐mm thickness were prepared and digital radiographs were taken with an aluminum stepwedge (SW) and 2‐mm‐thick tooth slice. The mean gray values (MGVs) of specimens were measured using the histogram function of a computer graphics program (Adobe Photoshop CS6; Adobe System, Inc., San Jose, CA). The MGVs of fiber post materials were compared with an aluminum SW and dentin of equal thickness. The fiber post specimens were examined by scanning electron microscopy and EDS analysis performed for the elementary analysis of material composition. The MGVs of fiber posts ranged between 83.67 ± 3.64 and 57.80 ± 7.08 pixels. Materials were sorted in descending order of MGV as follows: Reforpost, Carbopost, D.T. Light‐Post, Easypost, Glassix Radiopaque, Dentolic Glass Fiber Post, and RelyX Fiber Post. All fiber posts demonstrated significantly higher radiopacity values than 2‐mm‐thick aluminum (p < .05). EDS analysis results indicated that the evaluated fiber posts included various elements for radiopacity in different ratios. All tested fiber post materials showed radiopacity values above the minimum recommendations of the International Organization for Standardization. EDS analysis results indicated that each manufacturer used different compositions of elements like zirconium, barium, titanium, and iron for achieving radiopacity in materials.  相似文献   

9.
We set out to study connected porosity of crystalline rock using X‐ray microtomography and scanning electron microscopy with energy dispersive X‐ray spectroscopy (SEM‐EDS) with caesium chloride as a contrast agent. Caesium is an important radionuclide regarding the final deposition of nuclear waste and also forms dense phases that can be readily distinguished by X‐ray microtomography and SEM‐EDS. Six samples from two sites, Olkiluoto (Finland) and Grimsel (Switzerland), where transport properties of crystalline rock are being studied in situ, were investigated using X‐ray microtomography and SEM‐EDS. The samples were imaged with X‐ray microtomography, immersed in a saturated caesium chloride (CsCl) solution for 141, 249 and 365 days and imaged again with X‐ray microtomography. CsCl inside the samples was successfully detected with X‐ray microtomography and it had completely penetrated all six samples. SEM‐EDS elemental mapping was used to study the location of caesium in the samples in detail with quantitative mineral information. Precipitated CsCl was found in the connected pore space in Olkiluoto veined gneiss and in lesser amounts in Grimsel granodiorite. Only a very small amount of precipitated CsCl was observed in the Grimsel granodiorite samples. In Olkiluoto veined gneiss caesium was found in pinitised areas of cordierite grains. In the pinitised areas caesium was found in notable excess compared to chloride, possibly due to the combination of small pore size and negatively charged surfaces. In addition, elevated concentrations of caesium were found in kaolinite and sphalerite phases. The findings concerning the location of CsCl were congruent with X‐ray microtomography.  相似文献   

10.
The present study aims to evaluate the effect of brushing with fluoride dentifrice on teeth severely affected by erosion due to respiratory medicaments. Enamel (n = 50) and dentin (n = 50) bovine specimens were prepared and treated with artificial saliva (S‐control), acebrofilin hydrochloride (AC), ambroxol hydrochloride (AM), bromhexine hydrochloride (BR), and salbutamol sulfate (SS) and subjected to cycles of demineralization (immersing in 3 mL, 1 min, three times a day at intervals of 1 hr, for 5 days) followed by remineralization (saliva, 37°C, 1 hr). Simulated brushing with fluoridated toothpaste was performed using 810 strokes in a reciprocal‐action brushing simulator. Scanning electron microscopy, micro energy dispersive X‐ray fluorescence (μ‐EDXRF) spectroscopy and attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy were then performed. μ‐EDXRF images showed extensive erosion after treatment with all medicaments. SEM images showed enamel erosion in order SS > BR > AC = AM > S after brushing and fluoridation. FTIR results were in agreement. In case of dentin, μ‐EDXRF measurements showed significant difference in mineral content (percent weight of calcium and phosphate) in SS + brushing + fluoridation treated enamel compared to control, while μ‐EDXRF images showed erosive effects in the order SS > AM>BR > AC = S post brushing + fluoridation. SEM images showed erosion in the order SS > AM = BR > AC > S post brushing + fluoridation. Again, FTIR multivariate results were in agreement. Overall, our study shows that proper oral care is critical when taking certain medication. The study also demonstrates the possible use of FTIR for rapid clinical monitoring of tooth erosion in clinics.  相似文献   

11.
Scanning electron microscopy/energy dispersive X‐ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the “k‐ratio” (unknown/standard) measurement protocol development for electron‐excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X‐ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high‐throughput silicon drift detector energy dispersive X‐ray spectrometer (SDD‐EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X‐ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. SCANNING 35: 141‐168, 2013. 1 Published 2012 Wiley Periodicals, Inc.  相似文献   

12.
Laser irradiation has been proposed as a preventive method against dental caries since it is capable to inhibit enamel demineralization by reducing carbonate and modifying organic matter, yet it can produce significant morphological changes. The purpose of this study was to evaluate the influence of Er:YAG laser irradiation on superficial roughness of deciduous dental enamel and bacterial adhesion. Fifty‐four samples of deciduous enamel were divided into three groups (n = 18 each). G1_control (nonirradiated); G2_100 (7.5 J/cm2) and G3_100 (12.7 J/cm2) were irradiated with Er:YAG laser at 7.5 and 12.7 J/cm2, respectively, under water irrigation. Surface roughness was measured before and after irradiation using a profilometer. Afterwards, six samples per group were used to measure bacterial growth by XTT cell viability assay. Adhered bacteria were observed using confocal laser scanning microscopy (CLSM) and a scanning electron microscopy (SEM). Paired t‐, one‐way analysis of variance (ANOVA), Kruskal‐Wallis and pairwise Mann–Whitney U tests were performed to analyze statistical differences (p < .05). Before treatment, samples showed homogenous surface roughness, and after Er:YAG laser irradiation, the surfaces showed a significant increase in roughness values (p < .05). G3_100 (12.7 J/cm2) showed the highest amount of Streptococcus mutans adhered (p < .05). The increase in the roughness of the tooth enamel surfaces was proportional to the energy density used; the increase in surface roughness caused by laser irradiation did not augment the adhesion of Streptococcus sanguinis; only the use of the energy density of 12.7 J/cm2 favored significantly the adhesion of S. mutans.  相似文献   

13.
This study evaluated the mineral contents of root‐canal dentin after treatment with different irrigation activation protocols. One hundred and eight maxillary lateral incisor teeth were randomly divided into eight experimental groups and one control group. Root canals were prepared using ProTaper rotary files, with the exception of the Self‐Adjusting File (SAF) group. Canals were irrigated with 2 mL of 5% sodium hypochlorite (NaOCl) at each instrument change, and received a final flush with 10 mL of 17% ethylenediaminetetraacetic acid (EDTA) and 10 mL of 5% NaOCl for 1 min. The control group was irrigated with distilled water. Group I (GI): Needle syringe irrigation; Group II (GII): NaviTip FX; Group III (GIII): CanalBrush; Group IV (GIV): Manual dynamic activation with gutta‐percha; Group V (GV): Passive ultrasonic irrigation; Group VI (GVI): EndoActivator; Group VII (GVII): EndoVac; Group VIII (GVIII): SAF. The level of elemental composition was analyzed by a scanning electron microscopy and an energy‐dispersive spectrometer (EDS) system. The results were then statistically analyzed by one‐way ANOVA and Tukey tests. Ca/P ratio was changed after treatment with SAF and EndoActivator. The Ca, P, Mg, and S level changes were not statistically significant (P > 0.05). Final irrigation activation protocols did not alter the mineral level of root dentin surface. Microsc. Res. Tech. 76:893–896, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Purpose: This work aims to study the erosion on restorative materials and on surrounding dentin. Fifty root dentin samples were obtained from bovine incisors. Methods: Twenty samples were not restored and thirty received cavity preparations. Samples were assigned to five groups: G1, G2: sound dentin (D); G3: composite resin (CR); G4: resin‐modified glass‐ionomer cement (RMGIC); G5: glass‐ionomer cement (GIC). The samples of groups 2–5 were submitted to six cycles (demineralization–remineralization). Samples were analyzed by micro energy‐dispersive X‐ray fluorescence spectrometry (μ‐EDXRF) and by scanning electron microscopy (SEM). Results: Mineral loss was greater in G2 samples than in RMGI > CR > GIC > D (control). SEM images showed pronounced dentin demineralization in groups 2 and 4. The acid erosion has a significant effect on mineral loss (Ca and P) of root dentin without restoration. Conclusions: Composite resin had the best chemical resistance to erosion among all the materials. Fluoride contained in GIC seemed to cause some protection, however, with material degradation. Chemical interaction of tooth‐colored dental materials with root dentin could be assessed by μ‐EDXRF. Microsc. Res. Tech. 75:703–710, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
This research aims to probe the porosity profile and polymerization shrinkage of two different dual cure resin cements with different dentin bonding systems. The self‐adhesive resin cement RelyX U200 (named RU) and the conventional Allcem Core (named AC) were analyzed by x‐ray microtomography (μCT) and Scanning Electron Microscopy (SEM). Each cement was divided into two groups (n = 5): dual‐cured (RUD and ACD) and self‐cured (RUC and ACC). μCT demonstrated that the method of polymerization does not influence the porosity profile but the polymerization shrinkage. Fewer concentration of pores was observed for the conventional resin cement (AC), independently the method used for curing the sample. In addition, SEM showed that AC has more uniform surface and smaller particle size. The method of polymerization influenced the polymerization shrinkage, since no contraction for both RUC and ACC was observed, in contrast with results from dual‐cured samples. For RUD and ACD the polymerization shrinkage was greater in the lower third of the sample and minor in the upper third. This mechanical behavior is attributed to the polymerization toward the light. µCT showed to be a reliable technique to probe porosity and contraction due to polymerization of dental cements.  相似文献   

16.
This study evaluated and compared in vitro the morphology and mineral composition of dental enamel after erosive challenge in gastric juice and orange juice. Human enamel specimens were submitted to erosive challenge using gastric juice (from endoscopy exam) (n = 10), and orange juice (commercially-available) (n = 10), as follows: 5 min in 3 mL of demineralization solution, rinse with distilled water, and store in artificial saliva for 3 h. This cycle was repeated four times a day for 14 days. Calcium (Ca) loss after acid exposure was determined by atomic emission spectroscopy. The presence of carbonate (CO) and phosphate (PO) in the specimens was evaluated before and after the erosive challenge by FT-Raman spectroscopy. Data were tested using t-tests (P < 0.05). Morphology of enamel was observed in scanning electron microscopy (SEM). The mean loss of Ca was: 12.74 ± 3.33 mg/L Ca (gastric juice) and 7.07 ± 1.44 mg/L Ca (orange juice). The analysis by atomic emission spectroscopy showed statistically significant difference between erosive potential of juices (P = 0.0003). FT-Raman spectroscopy found no statistically significant difference in the ratio CO/PO after the erosive challenge. The CO/PO ratios values before and after the challenge were: 0.16/0.17 (gastric juice) (P = 0.37) and 0.18/0.14 (orange juice) (P = 0.16). Qualitative analysis by SEM showed intense alterations of enamel surface. The gastric juice caused more changes in morphology and mineral composition of dental enamel than orange juice. The atomic emission spectroscopy showed to be more suitable to analyze small mineral loss after erosive challenge than FT-Raman.  相似文献   

17.
The aim of the study was to evaluate the adhesion of a self‐adhering flowable composite resin to primary tooth enamel and dentin after silicon carbide paper (SiC) and laser pretreatment. Adhesive properties were evaluated as shear bond strength (SBS) and scanning electron microscopic (SEM) characteristics. A total 120 primary canine teeth were randomly divided into two groups to study enamel and dentin. Each group was divided into 6 subgroups (n = 10) according to type of surface preparation (SiC or Er:YAG laser) of enamel or dentin. Three methods were used to build cylinders of restoration on tooth surface: OptiBond All‐In‐One + Premise Flowable composite, OptiBond All‐In‐One + Vertise Flow and Vertise flow. After restoration, samples were tested for SBS and failure mode. Twenty eight samples were examined by SEM. The results of the study showed SBS of Vertise Flow was lower than others in enamel and dentin samples pretreated with SiC and in dentin samples pretreated with laser (P < 0.001). Compared to SiC pretreatment, laser pretreatment led to a significantly higher SBS with Vertise Flow on enamel (P < 0.001). Vertise Flow associated with the adhesive led to a higher SBS in enamel and dentin compared to Vertise Flow alone. Adhesive and mixed failure modes were observed more frequently in Vertise Flow groups. SEM images showed that Vertise Flow led to more irregularities on enamel and more open dentinal tubules after laser ablation compared SiC pretreatment. Microsc. Res. Tech. 79:334–341, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Aim: Evaluate the composite‐to‐enamel bond after passive or active application of self‐etching primer systems on polished or pre‐etched enamel with phosphoric acid. Materials and Methods: Two self‐etch adhesives systems (SEAS) were used: Clearfil SE Bond and Easy Bond. Third human molars were divided into 8 groups (N = 10). The crown of each tooth was sectioned into halves and the mesial/distal surfaces were used. The adhesives were actively or passively applied on enamel with or without prior phosphoric‐acid etching. Resin composite cylinders were built after adhesive application. After stored in relative humidity for 24 hr/37°C the specimens were subjected to microshear test in universal testing a machine at a crosshead speed of 0.5 mm/minute. The results were analyzed with three‐way ANOVA and the Tukey test. The enamel‐etching pattern was evaluated under SEM. Results: The 2‐step SEAS system presented significantly higher adhesive bond strength means (47.37 MPa) than the 1‐step (36.87 MPa). A poor enamel‐ etching pattern was observed in active mode showing irregular and short resin tags, however there was not compromised the bond strength. Conclusion: Active or passive application produced similar values of bond strength to enamel regardless of enamel pretreatment and type of SEAS.  相似文献   

19.
The purpose of this study was to evaluate mineral content of root canal dentin after treatment with different antibiotic pastes including the mixture of metronidazole, ciprofloxacin, doxycycline, cefaclor, amoxicillin, or minocycline. Fifty extracted maxillary canine teeth were randomly divided into five groups (n = 10 teeth for each group). Root canals were prepared Reciproc rotary files. Canals were irrigated using 5 ml 5% NaOCl and 1 ml 15% EDTA. Each tooth in all groups were longitudinally splitted into two pieces as a control and experimental samples. Each experimental group received following antibiotic paste; double antibiotic paste (DAP) and triple antibiotic paste with doxycycline (TAPd), TAP with cefaclor (TAPc), TAP with amoxicillin (TAPa), and TAP with minocycline (TAPm) for 21 days. The Ca, P, Mg, Ca, and K levels, and the Ca/P ratio was analyzed by a scanning electron microscope (SEM) equipped using a Bruker energy‐dispersive X‐Ray (EDX) detector. Data were analyzed with independent samples t‐test, one‐way anova, and Duncan tests. Ca and Ca/P ratio showed a statistically significant increase TAP with amoxicillin and cefaclor (p < .05). DAP, TAPd, and TAPm did not change the mineral levels (p > .05). TAPa and TAPc with increased the Ca level and Ca/P ratio of the root canal dentin which consequently positively influences the revascularization process.  相似文献   

20.
Background: It remains uncertain as to whether or not CO2 laser is able to hinder demineralization of enamel. The possibility to use bovine instead of human teeth on anticariogenic studies with laser has not yet been determined. Purpose: To compare the ability of CO2 laser and fluoride to inhibit caries‐like lesions in human enamel and to test whether a similar pattern of response would hold for bovine enamel. Study Design: Ninety‐six enamel slabs (2 × 2 × 4 mm) (48 from bovine and 48 from human teeth) were randomly distributed according to surface treatment (n = 12): CO2 laser, 5% sodium fluoride varnish (FV), 1.23% acidulated phosphate fluoride (APF) gel, or no treatment (control). Specimens were subjected to a 14‐day in vitro cariogenic challenge. Microhardness (SMH) was measured at 30 μm from the surface. For ultrastructural analysis, additional 20 slabs of each substrate (n = 5) received the same treatment described earlier and were analyzed by SEM. Results: ANOVA and Tukey test ascertained that CO2 laser promoted the least mineral loss (SMH = 252a). Treatment with FV resulted in the second highest values (207b), which was followed by APF (172c). Untreated specimens performed the worst (154d). SEM showed no qualitative difference between human and bovine teeth. APF and control groups exhibited surfaces covered by the smear layer. A granulate precipitate were verified on FV group and fusion of enamel crystals were observed on lased‐specimens. Conclusions: CO2 laser may control caries progression more efficiently than fluoride sources and bovine teeth may be a suitable substitute for human teeth in studies of this nature. Microsc. Res. Tech. 73:1030–1035, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号