首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
对奥氏体不锈钢316L进行等效应变为1.02的6道次室温等通道挤压(ECAP)试验。结果表明,在ECAP挤压过程中316L发生了剪切滑移变形和孪生变形及晶粒碎化,经过4和6道次挤压后分别得到平均晶粒尺寸约80 nm和约61 nm的均匀分布的等轴晶粒。在1道次ECAP挤压后316L的抗拉强度由674 MPa增加到984 MPa, 规定塑性延伸强度则由594 MPa增加到922 MPa,维氏显微硬度由116.33 HV增加到328.31 HV,但是塑性下降严重,可以通过600 ℃后续退火处理进行改善。  相似文献   

2.
采用有限元技术模拟6061铝合金在室温下等通道转角挤压(ECAP)过程,分析了模具圆心角、摩擦因数对ECAP过程的影响。结果表明,圆心角减小,试样等效应变值增大且较为均匀,但是挤压载荷增加;摩擦对载荷的影响明显。单道次挤压后,试样变形不均匀。  相似文献   

3.
等通道转角挤压(ECAP)工艺的研究现状   总被引:10,自引:3,他引:10  
等通道转角挤压(ECAP)是一种大塑形加工技术,可细化合金组织,改善性能,提高材料的成形性.本文概述ECAP法的基本原理、剪切模式与变形规律,分析摩擦因素对变形的影响,综述中国在ECAP合金组织、性能方面的一些研究成果.  相似文献   

4.
Experimental and numerical investigation on pure aluminum by ECAP   总被引:2,自引:0,他引:2  
The equal channel angular pressing(ECAP) experiments were carried out with industrial pure aluminum and an in-house mould. The comparison of material grain size before and after ECAP was performed by applying the technique of electron back scattered diffraction(EBSD). The results show that the grains in the material after ECAP are refined and the yield stress and ultimate strength are increased. In order to investigate the deformation mechanism during ECAP and the reason for driving grain size refinement, three-dimensional numerical simulations of the ECAP process were carried out. Based on the Lode parameter analysis, the deformation of the material sample is found very complicated, not just pure shear during extrusion through the angular channel. The simulation confirms that a strong strain gradient in the sample material is imposed by the ECAP.  相似文献   

5.
纯铝等径角挤扭新工艺变形   总被引:1,自引:0,他引:1  
等径角挤扭(ECAPT)是结合等径角挤压(ECAP)和挤扭(TE)两种典型的大塑性变形(SPD)工艺而产生的一种新型细晶材料制备技术。利用刚塑性有限元技术对纯铝1100ECAPT工艺变形特征进行模拟研究,获得了等效应变和等效应力的大小及分布规律,分析了挤压载荷随变形时间的变化规律及其对试样变形的影响。结果显示,在模具拐角和螺旋通道处,等效应变得到有效积累,最终呈层状分布,且相对较为均匀,应变分布均匀性也得到一定改善,等效应力在上述两处区域达到最大。采用纯铝进行室温3道次ECAPT实验,测量试样显微组织和力学性能的变化。结果表明,实验结果与模拟结果具有较好的一致性;晶粒得到了明显细化,屈服强度、抗拉强度与显微硬度等力学性能得到明显提高,但试样塑性略有降低。  相似文献   

6.
Equal channel angular pressing (ECAP) is a very interesting method for modifying microstructure in producing ultra fine grained (UFG) materials. It consists of pressing test samples through a die containing two channels, equal in cross section and intersecting at an angle Φ. As a result of pressing, the sample theoretically deforms by simple shear and retains the same cross sectional area to repeat the pressing for several cycles.Two-dimensional and three-dimensional finite element method (FEM) simulations of both one and four ECAP passes of two modified aluminium alloys were performed in order to investigate the deformation state of processed workpiece and, moreover, the effect of different strain hardening rate, die geometry (in terms of variation of channel outer angle) and friction on deformation distribution and magnitude. FEM results showed a lower equivalent plastic strain on the outer side of both cross and longitudinal sections of the billets after one and four passes. Microhardness tests performed on the same sections of ECAP processed billets supported these findings. Moreover, FEM analysis indicated that a higher strain hardening rate means a greater strain inhomogeneity on cross section of the processed billet when the channel outer angle is small. As the channel outer angle increases and when friction is computed, the effect of strain hardening on strain inhomogeneity tends to decrease, while the die geometry and friction affect plastic strain distribution more than the hardening behaviour of the studied alloys.  相似文献   

7.
Equal channel angular expansion extrusion with spherical cavity (ECAEE-SC) was introduced as a novel severe plastic deformation (SPD) technique, which is capable of imposing large plastic strain and intrinsic back-pressure on the processed billet. The plastic deformation behaviors of commercially pure aluminum during ECAEE-SC process were investigated using finite element analysis DEFORM-3D simulation software. The material flow, the load history, the distribution of effective strain and mean stress in the billet were analyzed in comparison with conventional equal channel angular extrusion (ECAE) process. In addition, single-pass ECAEE-SC was experimentally conducted on commercially pure aluminum at room temperature for validation, and the evolution of microstructure and microhardness of as-processed material was discussed. It was shown that during the process, the material is in the ideal hydrostatic stress state and the load requirement for ECAEE-SC is much more than that for ECAE. After a single-pass ECAEE-SC, an average strain of 3.51 was accumulated in the billet with homogeneous distribution. Moreover, the microstructure was significantly refined and composed of equiaxed ultrafine grains with sub-micron size. Considerable improvement in the average microhardness of aluminum was also found, which was homogenized and increased from HV 36.61 to HV 70.20, denoting 91.75% improvement compared with that of the as-cast billet.  相似文献   

8.
针对等径角挤压和挤扭两种工艺的不足,在充分发挥各自优势的基础上,提出了一种新型的大塑性变形工艺——等径角挤扭(Equal Channel Angular Pressing and Torsion,ECAPT)。采用DEFORM-3D软件对纯铝粉末多孔材料等径角挤扭成形过程进行单道次三维有限元模拟,重点分析螺旋通道长度对变形试样挤压载荷、等效应变、致密行为等场量变化规律的影响。结果表明,相比于传统的ECAP变形,ECAPT工艺螺旋通道的存在,可大大增加变形试样内部的静水压力;合理的螺旋通道长度,可有效提高变形试样的累积应变量和应变分布均匀性,显著改善变形试样的整体致密效果。文章在综合考虑最优数值模拟结果的基础上,自行设计了螺旋通道长度为30mm的ECAPT模具,并进行了相关实验验证,证明了所建立有限元模型的可靠性。  相似文献   

9.
采用有限元数值模拟方法研究了不同模具结构设计对TB2合金(Ti-5Mo-5V-8Cr-3Al)等通道弯角挤压过程的影响。与传统模具几何设计特点相比,新型等通道弯角挤压模具设计的内转角半径要大于外转角半径且均与模具内壁相切。针对模具不同内转角半径和外转角半径对等通道弯角挤压过程的影响,分析了TB2合金等通道弯角挤压过程的变形行为和应变均匀性。结果表明,随着内转角半径分别从1 mm升高至3,5,7和9 mm,TB2合金等通道弯角挤压后的应变均匀性更好和挤压载荷明显增大,较小的外转角半径能够使TB2合金挤压后获得较好的应变均匀性。综合内转角半径和外转角半径的有限元分析结果,当外转角半径为4 mm,内转角半径为5 mm时,TB2合金经等通道弯角挤压后具有最为理想的应变均匀性分布。  相似文献   

10.
In this study, two powder consolidation techniques, equal channel angular pressing (ECAP) and extrusion, were utilized to consolidate attritioned aluminum powder and Al-5?vol.% nano-Al2O3 composite powder. The effect of ECAP and extrusion on consolidation behavior of composite powder and mechanical properties of subsequent compacts are presented. It is found that three passes of ECAP in tube at 200?°C is capable of consolidating the composite to 99.29% of its theoretical density whereas after hot extrusion of the composite the density reached to 98.5% of its theoretical density. Moreover, extrusion needs higher temperature and pressing load in comparison to the ECAP method. Hardness measurements show 1.7 and 1.2 times higher microhardness for the consolidated composite and pure aluminum after ECAP comparing with the extruded ones, respectively. Microstructural investigations and compression tests demonstrate stronger bonds between the particles after three passes of ECAP than the extrusion. Furthermore, the samples after three passes of ECAP show better wear resistance than the extruded ones.  相似文献   

11.
严凯  孙扬善  白晶  薛烽 《金属学报》2010,46(1):6-12
利用3D转模等通道转角挤压(3D-RD ECAP)设备, 对AZ31镁合金进行了A', BA', BC'与C' 4种路径的ECAP实验. 对试样的显微组织观察显示, 经4种路径挤压后合金显微组织都明显细化, 但不同路径对微观组织和力学性能的影响不同. 经A' 和BA'路径挤压的试样组织中晶粒尺寸和硬度分布比其它两种路径挤压的试样更均匀, 且显示出更高的塑性. 通过对各种路径挤压过程中试样内部立方单元的变形分析, 揭示了传统的剪切模型理论的不足. 利用有限元方法模拟了试样ECAP的形变过程, 证实材料在变形过程中各部位受力差异很大. ECAP对试样变形的均匀性主要取决于拉/压应力交替作用于试样各个部位的顺序, 而与传统剪切模型中的立方单元变形规律没有直接关系.  相似文献   

12.
利用三维有限元方法模拟了圆形工件的等通道转角挤压过程,分析了工件上应变分布情况,其与理论值和二维模拟的结果符合较好.通过对稳定变形阶段塑性变形区的分析,探讨了应变分布不均匀的原因,所得结果有利于理解工件变形过程和优化工艺设计.  相似文献   

13.
等径角挤压工艺的无网格数值模拟研究   总被引:1,自引:0,他引:1  
等径角挤压(Equal Channel Angular Pressing,ECAP)工艺,是一种通过材料的剧烈塑性变形,获得大块超细晶材料的有效方法。采用无网格伽辽金法对等径角挤压工艺进行了数值模拟研究,分析了挤压过程中材料的流动规律,研究了模具圆心角、挤压件与模具间的摩擦状况对ECAP挤压效果的影响。随着模具圆心角的减小,挤压件的等效应变增大并且变得更加均匀,但是模具圆心角越小,挤压载荷越大,严重影响模具的使用寿命;摩擦状况对挤压件的等效应变的影响较小,对挤压载荷影响显著。无网格模拟分析结果与实验结果吻合良好。  相似文献   

14.
采用简化的切片平面应变假设,利用增量叠加法对椭圆截面螺旋等通道挤压(ECSEE)过程的应变累积进行了分析计算。通过对横截面上某一质点进行追踪,将ECSEE变形过程分解为两种基本变形方式:圆-椭圆/椭圆-圆截面过渡变形和椭圆截面扭转过渡变形,然后利用MATLAB软件编程求解,得到了组合后材料内部追踪点的累积等效应变沿模具通道长度的变化规律和横截面上等效应变累积的分布规律,并与Deform-3D有限元软件模拟结果进行了对比。结果表明:ECSEE扭转变形所得累积应变要大于其他变形形式累积的应变,ECSEE变形方式主要是剪切变形;坯料横截面的等效应变从坯料外围到中心呈梯度减小趋势;有限元模拟结果也验证了解析解的工程准确性。  相似文献   

15.
纯铝等径角挤技术(Ⅱ)--变形行为模拟   总被引:19,自引:5,他引:19  
通过有限元模拟和坐标网格,对纯铝等径角挤过程的变形行为进行了模拟和试验。结果表明,纯铝在单道次等径角挤压过程中所需的载荷随着样品位移的增加大致可分为快速增加、缓慢增加、快速增加、载荷值趋于稳定、载荷下降5个阶段。由于样品外部在主要变形区的流动速率比样品内部的快,因而样品在等径角挤压过程中会出现不均匀变形,样品底部沿宽度方向的塑性变形量明显少于样品顶部和中部的,坐标网格法实验结果也证明了这一点。在等径角挤压过程中,样品不同部位的应力状态不一致,样品内部存在压应力→拉应力的转变,样品外部存在压应力→拉应力→压应力的转变。摩擦消除后,有效应变有所增加,但并不能降低样品变形的不均匀性;采用尖角模具既能产生更大的剪切应变,又能提高变形的均匀性。  相似文献   

16.
To explore the temperature dependence of deformation behavior of BCC structural materials and the relevant effect of pre-annealing, commercially pure iron(CP Fe) produced by equal-channel angular pressing(ECAP) is selected as the experimental material. The influences of deformation temperature T and pre-annealing on deformation behavior,surface deformation characteristics and substructures of ECAP Fe were systematically studied. The results show that ECAP Fe undergoes a remarkable strain softening stage after a rapid strain hardening during uniaxial compression, and the softening degree and the yield strength rYSfirst decrease and then increase with raising temperature. Pre-annealing at400 °C effectively weakens the strain softening degree and increases rYS. To understand the influence of deformation temperature on deformation behavior, as well as the relevant pre-annealing effect, deformation and damage characteristics and dislocation structures are studied in detail. In a word, the strain softening of ECAP Fe is associated not only with internal structural instability, but also with temperature, and pre-annealing at 400 °C improves high-temperature mechanical properties of ECAP Fe.  相似文献   

17.
The deformation behavior of solid solution-treated AA6061 tubes in a novel severe plastic deformation process named Tube Channel Pressing has been assessed. In order to do so, an analysis based on the finite element method and dislocation density model is utilized, and microhardness measurement is carried out to verify the trends of analysis results. By comparing FEM results with experimental data, the optimized geometrical parameters controlling the deformation behavior of the tube in tube channel pressing are determined to obtain the best strain homogeneity and minimum dimensional changes in tube.  相似文献   

18.
In this study, a method that combines the equal channel angular pressing (ECAP) and twist extrusion (TE) techniques has been introduced as a severe plastic deformation process and investigated by means of the three-dimensional finite element analysis. Owing to the form of the mold which is used in this technique, it can be called the symmetrical channels angular pressing (SCAP) method. This method resembles the more common ECAP process for samples with rectangular cross sections, with the difference that, in this method, the entrance and exit channels at the intersecting corner of the mold also have a twist about their longitudinal axis (as in the TE technique). In this study, to show the characteristics of the SCAP method and to compare it with the ECAP technique, the former method has been simulated by the ABAQUS/Explicit software. Also, to validate the obtained results, the SCAP and ECAP methods were practically applied on samples made of pure commercial aluminum (AA1050). To get the strain distribution along the longitudinal and transverse directions of the samples, Vickers hardness was measured on these samples. The results obtained from these hardness measurements indicate that after one pass, the SCAP method can achieve a higher amount of hardness, compared with the ECAP technique. Moreover, the strain distributions obtained from the simulation and from the samples demonstrate that the SCAP method produces a more homogeneous distribution of strain in the workpieces.  相似文献   

19.
To manufacture plate by the combination of equal channel angular processing (ECAP) and porthole die extrusion techniques, a novel technique, namely portholes-equal channel angular processing (P-ECAP), was studied. Extrusion of AL6005A plate used for the bullet train plate was investigated by finite element method. The relevant porthole dies involving ECAP technique in channels were designed. Dimensional changes in the scrap part of the extrudate obtained after extrusion from the P-ECAP die, with different channel angles, were predicted. Effects of the channel angle and extrusion speed on the maximum temperature of the workpiece and other field variables were evaluated. At the channel angle of 160° of P-ECAP dies, the extrudate exhibited the optimal performance and the least amount of extrudate scrap was obtained. The optimal extrusion speed was 3–5 mm/s. Moreover, with the increase in ram speed from 1 to 9 mm/s, the peak extrusion load increased by about 49% and the maximum temperature was increased by about 70 °C. The effective strain exhibited ascending trend in the corner of the ECAP deformation zone. In the solder seam and the side of die bearing of extrudate, the maximum principal stresses were tensile stress.  相似文献   

20.
突破传统ECAP变形全过程通道等截面思路,提出一种耦合剪切应变和正应变于一体的新型等通道球形转角挤压(equal channel angular extrusion with spherical cavity,ECAE-SC)工艺。在自行研制的模具上对工业纯铝进行室温单道次ECAE-SC挤压实验,采用OM、EBSD和TEM等技术手段,研究了ECAE-SC变形过程中工业纯铝微观组织的演变规律,并测试了变形后试样的显微硬度。结果表明,在ECAE-SC工艺剧烈简单剪切变形诱导下,工业纯铝仅需1道次挤压变形即可获得等轴、细小、均匀的超细晶组织,平均晶粒尺寸约为400 nm;工业纯铝室温ECAE-SC变形以位错滑移为主并伴有不完全连续动态再结晶,其微观组织经历了剪切带→位错胞→小角度亚晶→大角度等轴晶粒等动态演化过程。1道次ECAE-SC变形后,工业纯铝组织以{110}001高斯织构为主,同时存在部分{111}112铜型织构;材料显微硬度值大幅提升,由初始289.4 MPa提高到565.3 MPa,增幅高达95.33%,且分布均匀性良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号