首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Generally, internal micro‐fin tubes are used for increasing the life and performance of electronic devices. The micro‐fins enhance the heat transfer rate by increasing the surface area with an increase of the pressure drop. In this study, heat transfer and pressure drop are analyzed by varying Reynolds number with the increase in the number of fins in tubes. Heat transfer and pressure drop, together with turbulence kinetic energy of micro‐fin tubes (helical and straight) and a smooth tube, have been evaluated for different Reynolds numbers (60 000, 40 000, 20 000, and 2000) at a constant temperature of 350 K, which clearly establishes laminar to turbulent flow. It is observed that the helical micro‐fin tube has a better result compared with the straight micro‐fin tube and smooth tube at Reynolds numbers 60 000, 40 000, and 20 000 at velocity 2, 1, and 0.5 m/s, respectively. This study is an attempt to establish a comparison of different micro‐fin geometries with varying Reynolds numbers, concluding that a high Reynolds number is suitable for the same.  相似文献   

2.
The experimental stand and procedure for flow boiling investigations are described. Experimental data for pure R22, R134a, R407C and their mixtures with polyester oil FUCHS Reniso/Triton SEZ 32 in a tube with porous coating and smooth, stainless steel reference tube are presented. Mass fraction of oil was equal to 1% or 5%. During the tests inlet vapour quality was set at 0 and outlet quality at 0.7. Mass velocity varied from about 250 to 500 kg/m2s. The experiments have been conducted for average saturation temperature 0 °C. In the case of flow boiling of pure refrigerants, the application of a porous coating on inner surface of a tube results in higher average heat transfer coefficient and simultaneously in lower pressure drop in comparison with the flow boiling in a smooth tube for the same mass velocity. Correlation equation for heat transfer coefficient calculation during the flow boiling of pure refrigerants inside a tube with porous coating has been proposed.  相似文献   

3.
The flow pattern based flow boiling heat transfer and two-phase pressure drop models for CO2, recently developed by Cheng et al. [L. Cheng, G. Ribatski, J. Moreno Quibén, J.R. Thome, New prediction methods for CO2 evaporation inside tubes: Part I – A two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drops, Int. J. Heat Mass transfer 51 (2008) 111–124; L. Cheng, G. Ribatski, J.R. Thome, New prediction methods for CO2 evaporation inside tubes: Part II – An updated general flow boiling heat transfer model based on flow patterns, Int. J. Heat Mass transfer 51 (2008) 125–135], have been used to predict the thermal performance of CO2 in a silicon multi-microchannel evaporator (67 parallel channels with a width of 0.223 mm, a height of 0.68 mm and a length of 20 mm) for cooling of a microprocessor. First, some simulation results of CO2 flow boiling heat transfer and two-phase pressure drops in microscale channels are presented. The effects of channel diameter, mass flux, saturation temperature and heat flux on flow boiling heat transfer coefficients and two-phase pressure drops are next addressed. Then, simulations of the base temperatures of the silicon multi-microchannel evaporator using R236fa and CO2 were performed for the following conditions: base heat fluxes from 20 to 100 W/cm2, a mass flux of 987.6 kg/m2s and a saturation temperature of 25 °C. These show that the base temperatures using CO2 are much lower than those using R236fa. Compared to R236fa, CO2 has much higher heat transfer coefficients and lower pressure drops in the multi-microchannel evaporator. However, the operation pressure of CO2 is much higher than that of R236fa. Based on the analysis and comparison, CO2 appears to be a promising coolant for microprocessors at low operating temperatures but also presents a great technological challenge like other new cooling technologies.  相似文献   

4.
A new flow boiling heat transfer model and a new flow pattern map based on the flow boiling heat transfer mechanisms for horizontal tubes have been developed specifically for CO2. Firstly, a nucleate boiling heat transfer correlation incorporating the effects of reduced pressure and heat flux at low vapor qualities has been proposed for CO2. Secondly, a nucleate boiling heat transfer suppression factor correlation incorporating liquid film thickness and tube diameters has been proposed based on the flow boiling heat transfer mechanisms so as to capture the trends in the flow boiling heat transfer data. In addition, a dryout inception correlation has been developed. Accordingly, the heat transfer correlation in the dryout region has been modified. In the new flow pattern map, an intermittent flow to annular flow transition criterion and an annular flow to dryout region transition criterion have been proposed based on the changes in the flow boiling heat transfer trends. The flow boiling heat transfer model predicts 75.5% of all the CO2 database within ±30%. The flow boiling heat transfer model and the flow pattern map are applicable to a wide range of conditions: tube diameters (equivalent diameters for non-circular channels) from 0.8 to 10 mm, mass velocities from 170 to 570 kg/m2 s, heat fluxes from 5 to 32 kW/m2 and saturation temperatures from −28 to 25 °C (reduced pressures from 0.21 to 0.87).  相似文献   

5.
Flow boiling heat transfer experiments using R134a were carried out for jet impingement on smooth and enhanced surfaces. The enhanced surfaces were circular micro pin fins, hydrofoil micro pin fins, and square micro pin fins. The effects of saturation pressure, heat flux, Reynolds number, pin fin geometry, pin fin array configuration, and surface aging on flow boiling heat transfer characteristics were investigated. Flow boiling experiments were carried out for two different saturation pressures, 820 kPa and 1090 kPa. Four jet exit velocities ranging from 1.1–4.05 m/s were investigated. Flow boiling jet impingement on smooth surfaces was characterized by large temperature overshoots, exhibiting boiling hysteresis. Flow boiling jet impingement on micro pin fins displayed large heat transfer coefficients. Heat transfer coefficients as high as 150,000 W/m2 K were observed at a relatively low velocity of 2.2 m/s with the large (D = 125 μm) circular micro pin fins. Jet velocity, surface aging, and saturation pressure were found to have significant effects on the two-phase heat transfer characteristics. Subcooled nucleate boiling was found to be the dominant heat transfer mechanism.  相似文献   

6.
Chen-Ru Zhao  Zhen Zhang 《传热工程》2018,39(16):1437-1449
The in-tube cooling heat transfer and flow characteristics of supercritical pressure CO2 mixed with small amounts of lubricating oil differ from those for pure CO2 due to the entrainment of the lubricating oil as well as the sharp property variations of the supercritical CO2 working fluid. In-tube gas cooling flow and heat transfer models were developed in this study for CO2 with entrained polyol ester type lubricating oil in a CO2 gas cooler at supercritical pressures. A “thermodynamic approach,” which treats the CO2–oil mixture as a homogenous mixture was used with the heat transfer coefficients and frictional pressure drops evaluated based on the thermophysical properties of the CO2–oil mixture. Thermophysical property variation correction terms as a function of the wall temperature and the oil concentration were included in the models. The frictional pressure drop correlation predicts more than 90% of the experimentally measured data within ±10%, while the heat transfer coefficient correlation predicts more than 90% of the experimentally measured data within ±20%.  相似文献   

7.
A segmented approach [1] for the CO2 helical‐coil‐in‐fluted‐tube gas cooler is developed. The CO2 helical‐coil‐in‐fluted‐tube gas cooler consists of helically coiled tube and fluted tube. It is fabricated by twisting a straight copper tube to form helically coiled tube and embedded in the groove of the fluted tube. The available heat transfer and pressure drop correlations for the supercritical CO2‐side and water‐side are provided to simulate the gas cooler. The simulation is compared with a detailed set of experimental data, for given the inlet conditions. The predicted data matches well with the experimental data with absolute average deviations of 1.15, 4.6 and 4.7% for the CO2 pressure drop, gas cooler exit temperature and hot water temperature, respectively. Based on the good matches between measured data and predicted data, the detailed thermodynamic processes of gas cooler parameters are predicted and analyzed. Furthermore, different arrangements of the gas cooler within the original package dimensions are simulated and better performance of the gas cooler is obtained under the structural parameters of the 3‐row fluted tube with the inner diameter 12 mm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Heat transfer for flow boiling of water and critical heat flux (CHF) experiments in a half‐circumferentially heated round tube under low‐pressure conditions were carried out. To clarify the flow patterns in the heated section, experiments in the round tube under the same conditions were also carried out, and their results were compared. The experiments were conducted with atmospheric‐pressure water in test sections with inner diameter D = 6 mm, heated length L = 360 mm, inlet water subcooling ΔTin = 80 K, and mass velocity G from 0 to 2000 kg/(m2·s) for the half‐circumferentially heated round tube and from 0 to 7000 kg/(m2·s) for the full‐circumferentially heated tube. The experimental data demonstrated that the wall temperature near the outlet of the half‐circumferentially heated tube remained almost the same until CHF. It was found that burnout occurred when the flow regime changed from churn flow to annular flow, and the liquid film on the heated wall dried out although liquid film on the unheated wall remained. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(3): 149–164, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10022  相似文献   

9.
Heat removal of more than 10 MW/m2 in heat flux has been required in high‐heat‐generation equipment in nuclear fusion reactors. In some conditions of water subcooling and velocity, there appears an extraordinary high heat flux boiling in the transition boiling region. This boiling regime is called micro‐bubble emission boiling (MEB) because many micro‐bubbles are spouted from the heat transfer surface accompanying a huge sound. The study intent is to obtain heat transfer performance of MEB in horizontal and vertical heated surfaces to parallel flow of subcooled water, comparing with CHF of this system. Three types of MEB with different heat transfer performance and bubble behavior are observed according to the flow velocity and liquid subcooling. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(2): 130–140, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10077  相似文献   

10.
This paper presents a comprehensive review on the flow boiling heat transfer of CO2–lubricant mixtures. Some of the immiscible lubricants in CO2 include alkyl naphthalene/alkylbenzne (AN/AB) and polyalphaolefin (PAO), while polyalkylene glycol (PAG) is partially miscible, and polyol ester (POE) is completely miscible. The effect of oil concentration, vapour quality, heat and mass fluxes and saturation temperature is addressed. One database has been created by collecting the experimental data from the open literature on the flow boiling heat transfer of CO2–lubricant mixtures, along with empirical correlations. A simple simulation model has been developed in EES software package to compare the empirical correlations with the CO2–lubricant mixtures experimental database. Most empirical correlations fail to predict the flow boiling heat transfer coefficient in good agreement with the experimental data. Hence, further research is needed to develop appropriate correlations for the flow boiling heat transfer of CO2–lubricant mixtures.  相似文献   

11.
对以纯水为基液的不同纳米流体管内流动沸腾进行了模拟。利用UDF编程定义流体的沸腾相变源项,将其导入FLUENT软件中分别模拟这四种流体在水平管内的流动沸腾过程。得到了四种流体流动沸腾的速度云图,以及流型分布云图。对比分析了四种流体的速度分布云图、四种流体从初始状态沸腾到1s时的流型分布云图以及四种流体层状流流型的特点。结果表明,四种流体在水平管内沸腾都会出现泡状流、弹状流、层状流以及波状流四种流型,并且沿管长方向含气量逐渐增加。在相同的时间内,纳米流体的沸腾比纯水更剧烈,而且,不同的纳米流体沸腾程度也不同。在相同的体积分数下,纳米颗粒的导热系数越大,其对应的纳米流体沸腾越剧烈。说明纳米颗粒的导热系数是影响纳米流体沸腾传热的主要因素。  相似文献   

12.
The pressure drop and boiling heat transfer characteristics of steam-water two-phase flow were studied in a small horizontal helically coiled tubing once-through steam generator. The generator was constructed of a 9-mm ID 1Cr18Ni9Ti stainless steel tube with 292-mm coil diameter and 30-mm pitch. Experiments were performed in a range of steam qualities up to 0.95, system pressure 0.5-3.5 MPa, mass flux 236-943 kg/m2s and heat flux 0-900 kW/m2. A new two-phase frictional pressure drop correlation was obtained from the experimental data using Chisholm’s B-coefficient method. The boiling heat transfer was found to be dependent on both of mass flux and heat flux. This implies that both the nucleation mechanism and the convection mechanism have the same importance to forced convective boiling heat transfer in a small horizontal helically coiled tube over the full range of steam qualities (pre-critical heat flux qualities of 0.1-0.9), which is different from the situations in larger helically coiled tube where the convection mechanism dominates at qualities typically >0.1. Traditional single parameter Lockhart-Martinelli type correlations failed to satisfactorily correlate present experimental data, and in this paper a new flow boiling heat transfer correlation was proposed to better correlate the experimental data.  相似文献   

13.
用两根内表面微结构不同的水平光滑管环状流区流动沸腾换热实验数据,采用叠加模型分别建立了流动沸腾换热关系式,并比较它们的抑制因子。结果表明,表面微结构对抑制因子有显的影响;当表面的平均凹腔半径较大时,抑制因子明显增大。表明表面微结构改变对流动沸腾换热能起到较好的强化作用。  相似文献   

14.
A capillary tube‐based CO2 heat pump is unique because of the transcritical nature of the system. The transcritical cycle has two independent parameters, pressure and temperature, unlike the subcritical cycle. A comparative study for various operating conditions, based on system COP and exergetic efficiency, of a capillary tube and a controllable expansion valve‐based transcritical carbon dioxide heat pump systems for simultaneous heating and cooling at 73 and 4°C, respectively, is presented here. Two optimized capillary tubes having diameter of 1.5 and 1.6 mm are compared with an equivalent controllable throttle valve. Heat transfer and fluid flow effects are included in the gas cooler and evaporator model and capillary tube employs the homogeneous flow model to simulate two‐phase flow. Subcritical and supercritical thermodynamic and transport properties of CO2 are calculated employing a precision in‐house property code. Optimization of effective distribution of total heat exchanger area ratio between gas cooler and evaporator is investigated. The exergetic efficiency is better in case of the capillary tube than that of a controllable throttle valve‐based system. Capillary tube‐based system is shown to be quite flexible regarding changes in ambient temperature, almost behaving to offer an optimal pressure control just like the controllable expansion valve yielding both, maximum system COP and maximum exergetic efficiency. Relatively at a smaller diameter, the capillary tube exhibits better exergetic efficiency. Capillary tube length is the critical parameter that influences system optimum conditions. The exergy flow diagram exhibits that compressor, gas cooler and capillary tube contribute a larger share, in that order, to system irreversibility. It is fairly established in this study that a capillary tube can be a good engineering option for small capacity systems in lieu of an expansion valve, which has been thought of as the only possible solution to attain the pressure optimization, an important feature of all transcritical CO2 systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
An experimental and numerical study on convection heat transfer of water flowing through an alternating cross‐section flattened (ACF) tube are investigated in this paper. The thermal‐fluid characteristics were evaluated by numerical simulation. The test run conditions covered a mass flux of 200 to 800 kg m?2 s?1, a heat flux of 10 kW/m2, and an inlet temperature of 40°C. The results showed that the Nusselt number increased with the increase in mass flux. Moreover, the heat transfer was also affected by the flow characteristics. Vortices were formed at the curved wall, and their intensities were increased along the flow direction. It was also found that the heat transfer and pressure drop were larger than that of the circular tube. However, the thermal performance was greater than the pressure loss penalty. The comparison results showed that the ACF tube had better performance than the circular tube. Further, the details of heat transfer, flow resistance, and fluid behavior were investigated and discussed in this study.  相似文献   

16.
The effects of PAG oil concentration on the convective gas cooling heat transfer and the pressure drop characteristics of supercritical CO2/oil mixture in minichannel tube were investigated. The test results showed that the average gas cooling heat transfer coefficient was decreased by 20.4% and the average pressure drop was increased by 4.8 times when the oil concentration was increased from 0 to 4 wt.%. The effects of the oil concentration on the convective gas cooling heat transfers and the pressure drops of the supercritical CO2/oil mixture in minichannel tubes were experimentally confirmed to be significant.  相似文献   

17.
A numerical study of an oil–water Taylor flow is presented in this paper to explore its flow and heat transfer characteristics. Due to the large surface area to volume ratio in narrow channels, using slug flows, high heat and mass transfer rates could be achieved. Sound knowledge of the underlying physics of slug flow is required for the practical design of microfluidic devices. In this study, hydrodynamics and heat transfer characteristics of dispersed oil droplets flowing inside a vertically upward circular microchannel (D = 0.1 mm) with water being the carrier phase have been explored numerically. ANSYS Fluent was employed to capture the liquid–liquid interface using volume of fluid method. Two different boundary conditions were considered in the present study. First, an isothermal wall of 373 K and later a constant wall heat flux (420 kW/m2) were, respectively, prescribed over the wall of the microchannel. The numerical code was validated against the results available in the literature, and the significant results in the form of pressure drop and heat transfer rates have been discussed. A considerable increase in Nusselt number, up to 180% and 210%, was observed with the oil–water slug flow in contrast to the liquid‐only single‐phase flow inside the microchannel for isothermal and constant wall heat flux conditions, respectively.  相似文献   

18.
An experimental study on the characteristics of two phase flow boiling of pure refrigerants such as R12 and R22 as well as nonazeotropic refrigerant mixtures R22/R114 and R22/R152a inside horizontal enhanced surface tubing is presented. The enhanced surface tubing results showed a significant improvement of the heat transfer over that of an equivalent smooth tube, depending on the mixture components and their concentrations. Correlations are proposed to predict the heat transfer characteristics such as average heat transfer coefficients as well as pressure drops of nonazeotropic refrigerant mixture flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixtures pressure drop is a weak function of the mixture compositions.  相似文献   

19.
Most investigations on forced convective boiling have been conducted by using uniformly heated round tubes under a vertical upward flow condition, although the actual system has a non‐uniformly heated condition with several tube orientations. The non‐uniformity of the heat flux and tube inclination causes the liquid film distribution, which in turn affects the critical heat flux. In this investigation, the flow and heat‐transfer characteristics were experimentally investigated under non‐uniformly heated conditions along the circumferential direction with a 45° tube inclination. In the experiment, CHF was measured by using two different heated lengths, i.e., 900 and 1800 mm. The experimental results showed a unique tendency of CHF caused by the interrelationship of the non‐uniform heat flux distribution, the tube inclination, and liquid film redistribution. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20333  相似文献   

20.
The paper presents an experimental study of flow boiling heat transfer characteristics of refrigerant mixture R22/R114 in the annuli of a horizontal enhanced surface tubing evaporator. The test section had an inner tube bore diameter of 17.3 mm, an envelope diameter of 28.6 mm and an outer smooth tube of 32.3 mm internal diameter. The ranges of heat flux and mass velocity covered in the tests were 5–25 kW/m2 and 180–290 kg/m2/s, respectively, at a pressure of 570 kPa. The enhanced surface tubing data shows a significant enhancement of the heat transfer compared with an equivalent smooth tube depending on the mixture components and their concentrations. Correlations are proposed to predict such heat transfer characteristics as the average heat transfer coefficients as well as pressure drops of R22/R114 nonazeotropic refrigerant mixture flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture's pressure drop is a weak function of the mixture composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号