首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Biohydrogen production from cassava starch wastewater was evaluated in anaerobic sequencing batch biofilm reactor (AnSBBR) using different inoculum (mixed cultures from naturally fermented wastewater and anaerobic sludge thermally treated) and feeding strategies (batch and fed-batch). The highest hydrogen productivity (2.4 LH2 L−1 d−1) and yield (11.7 molH2 kg−1Carbohydrates) were verified in low and intermediate organic load rates (12 and 14 g L−1 d−1) and longer cycle time (4 h), respectively. The productivity was favored by fed-batch strategy, and yield by batch. The hydrogen production was verified in both inoculum sources. However, in the assays inoculated from naturally fermented wastewater, with higher organic load rate (18 g L−1 d−1) and intermediate cycle time (3 h) no hydrogen was observed, regardless the feeding strategy, indicating that the inhibitory effects of the indigenous microorganisms present in cassava starch wastewater were more expressive in these conditions. The operational conditions applied to hydrogen production in AnSBBR from cassava starch wastewater may influence the microflora development in the reactor. In this study three possible scenarios were verified: hydrogen-producing bacteria (HPB) growth; hydrogen-producing bacteria inhibition or coexistence between ones and lactic acid bacteria (LAB), which are autochthones of this wastewater.  相似文献   

2.
This work addresses the hydrogen production from enzymatic hydrolysates of Agave tequilana bagasse and the valorization of the acidogenic effluent for methane production in anaerobic sequencing batch reactors (ASBRs). Regarding hydrogen production, the ASBR was operated at four organic loading rates (OLRs), which were modified by decreasing the cycle time (from 24 to 12 h) and increasing the COD concentration (from 8 to 12 and 16 g L?1). Results showed that the highest OLR promoted the highest hydrogen production rate of 25.2 ± 2.1 NmL L?1 h?1. Conversely, the hydrogen molar yield remained constant, obtaining similar values to the highest reported for lignocellulosic hydrolysates in continuous reactors (1.6H2-mol molconsumed sugar?1). Regarding methane production from the acidogenic effluent, an unexpected methane suppression was observed during the first 5 cycles of the ASBR operation. Such event was attributed to the disaggregation of the granular sludge due to the remaining hydrolytic activity of the enzymatic cocktail used for the hydrolysates production. This was corroborated by feeding acetate to an ASBR (positive control) and supplying the enzymatic cocktail. Overall, even though the ASBR configuration demonstrated its suitability for hydrogen production, further studies are needed to coupling the methanogenic phase in different reactor configurations.  相似文献   

3.
The objective of the present study was to determine the energetic potential from cassava starch wastewater in a two-stage system (BioH2 + BioCH4) composed by anaerobic sequencing batch biofilm reactors (AnSBBR). Included in this general objective, the behavior of the methanogenic AnSBBR regarding organic matter removal and biomethane production will be investigated. The acidogenic AnSBBR was operated with organic loading rate (OLR) of 14 gCarb.L−1.d−1, influent concentration of 5 gCarb.L−1 and cycle time of 4 h. The methanogenic AnSBBR was submitted to OLR increase (3.7–12 gCOD.L−1.d−1), provided by arrangements between influent concentration (2.8; 4.0 and 6.0 gCOD.L−1) and cycle time (6; 8 and 12 h). For the evaluated condition, the acidogenic reactor presented productivity of 0.7 LH2.L−1.d−1 and yield of 1.1 molH2.kg−1Carb. The methanogenic reactor presented stable methane production (%CH4 > 78) during the 260-days operating period. The maximum methane productivity (2.71 LCH4.L−1.d−1) and yield (0.263 LCH4.g−1COD) were obtained at OLR of 12 gCOD.L−1.d−1 and cycle time of 6 h. The estimated energy production rate in the two-stage system (BioH2 + BioCH4) was 105.2 kJ.L−1.d−1.  相似文献   

4.
The biological production of hydrogen from cassava starch wastewater (CSW) was evaluated in an anaerobic fixed-bed reactor (UAFBR). The assays were carried out to evaluate the effects of organic loading rate (OLR) increase and strategies of inoculation (AS – anaerobic sludge thermally treated and NF – naturally fermented cassava starch wastewater) on UAFBR performance. The OLR increase (10–20 g L−1 d−1) associated with hydraulic retention time (HRT) decrease (4–2 h) improved the volumetric hydrogen production rate (VHPR, from 229 to 550 mLH2.L−1.d−1), molar hydrogen flow rate (MHFR, from 1.0 to 2.5 mmolH2.h−1) and hydrogen yield (HY, from 0.2 to 0.3 molH2.mol−1Carb) from CSW due to increase in substrate availability. Both inoculation alternatives (AS and NF) were effective for the selection of acidogenic microorganisms, which demonstrates that NF could be considered a simple and economic alternative for the acquisition of inoculum for continuous acidogenic reactors. Hydrogen production decreased after 10 days of operation when the specific organic loading rate (SOLR) reached reduced values (<1 gCarb.g−1VSS.d−1), which impairs hydrogen production. For all assays, methane was present in the biogas after the 20th day of operation mainly due to biomass accumulation, which alters the biota of the reactor. Although many factors could influence the process performance in UAFBR for the production of biohydrogen, the accumulation of biomass have been pointed as the main factor in the determination of the production time, thus demanding the implementation of systematic practices to remove the excess of biomass to maintain the SOLR in levels adequate for hydrogen production.  相似文献   

5.
The present paper reports on results obtained from experiments carried out in a laboratory-scale anaerobic packed bed biofilm reactor (APBR), with recirculation of the liquid phase, for continuously biohydrogen production via dark fermentation. The reactor was filled with Kaldnes® biofilm carrier and inoculated with an anaerobic mesophilic sludge from a urban wastewater treatment plant (WWTP). The APBR was operated at a temperature of 37 °C, without pH buffering. The effect of theoretical hydraulic retention time (HRT) from 1 to 5 h on hydrogen yield (HY), hydrogen production rate (HPR), substrate conversion and metabolic pathways was investigated. This study indicates the possibility of enhancing hydrogen production by using APBR with recirculation flow. Among respondents values of HRT the highest average values of HY (2.35 mol H2/mol substrate) and HPR (0.085 L h?1L?1) have been obtained at HRT equal to 2 h.  相似文献   

6.
The use of wastewater for the biological production of H2 (biohydrogen) by dark fermentation has been studied for a variety of waste substrates and mixed or isolated inocula. However, for brewery wastewater (BW), which is generated in large volumes and has characteristics that are highly suitable for acidogenic fermentation, the available studies describe the use of mixed cultures, especially pretreated methanogenic inocula. The aim of this work was to isolate an enterobacterium from aviary litter that was capable of fermenting BW and generating biogas rich in H2. The biochemical characterization and species confirmation confirmation revealed the isolation of Klebsiella peneumoniae, which provided efficient production of biogas rich in H2 (30–40%) in batch assays performed for up to 72 h, with the inoculum in suspension, at a small scale (in serum bottles) and using a mechanically-stirred anaerobic reactor (AnBBR), employing crude BW without any supplementation. The hydrogen yield and molar hydrogen flow rate were 0.80–1.67 mol H2 mol?1 glucose and 0.2–2.2 mmol H2 h?1, respectively, indicating good performance of the inoculum in metabolizing this substrate and the possibility of optimizing the process by varying the duration of the batch.  相似文献   

7.
The performance of biohydrogen production in an anaerobic sequencing batch reactor (ASBR) was evaluated with respect to variations in the key operational parameters – pH, hydraulic retention time HRT, and organic loading rate OLR using sugar refinery wastewater as substrate. Analysis of variance (ANOVA) indicated HRT had less significant influence on hydrogen content and yield in comparison to pH and OLR, whereas OLR has much impact on hydrogen production rate. Taxonomic analysis results showed that diverse bacterial species contributed to hydrogen production and the dominant species in the bioreactor were governed by all operational parameters. Even without pretreatment of the seed sludge, a high proportion of Clostridium spp. over the other bacterial species was observed at pH 5.5, and this is compatible with the high hydrogen productivity. Consequently, pH 5.5, HRT 10 h, and OLR 15 kg/m3 d were delineated as the optimal operational conditions for an ASBR fed with sugar refinery wastewater.  相似文献   

8.
Production of hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides was compared in continuously operated tubular photobioreactors illuminated by natural outdoor sunlight (0.15–66 klux; diurnal cycle) and constant indoor artificial light (10 klux; tungsten lamps). In both cases the operating temperature was 35 °C and the organic carbon source was an acid hydrolysate of oil palm empty fruit bunch (EFB), an agroindustrial waste. In the outdoor photobioreactor, under the best production conditions, the daytime feeding rate of the mixed carbon substrate was 48 mL h?1 and the average pseudo-steady state hydrogen production rate was 36 mL H2 L?1 medium h?1. The cumulative hydrogen production was 430 mL H2 L?1 medium. For the indoor photobioreactor fed at the same rate as the outdoor system, the steady state average hydrogen production rate was 43 mL H2 L?1 h?1 and the cumulative hydrogen production was 517 mL H2 L?1 medium. Reducing the feed rate to less than 48 mL h?1, enhanced the biomass concentration, but reduced hydrogen production in both bioreactors. The sunlight-based cumulative hydrogen production was only about 17% less compared to the artificially lit system, but required only 22% of the electrical energy.  相似文献   

9.
Ammonia borane (AB) has been identified as one of the most promising candidates for chemical hydrogen storage. However, the practical application of AB for hydrogen production is hindered by the need of efficient and inexpensive catalysts. For the first time, we report that the incorporation of Mo into Cu@Co core-shell structure can significantly improve the catalytic efficiency of hydrogen generation from the hydrolysis of AB. The Cu0.81@Mo0.09Co0.10 core-shell catalyst displays high catalytic activity towards the hydrolysis dehydrogenation of AB with a turnover frequency (TOF) value of 49.6 molH2 molcat?1 min?1, which is higher than most of Cu-based catalysts ever reported, and even comparable to those of noble-metal based catalysts. The excellent catalytic performance is attributed to the multi-elements co-deposition effect and electrons transfer effect of Cu, Mo and Co in the tri-metallic core-shell NPs.  相似文献   

10.
Using the right start-up strategy can be vital for successful hydrogen production from thermophilic dark fermentation (55 °C), but it needs to be affordable. Hence, three start-up strategies modifying only influent concentration and temperature were assessed in a reactor fed with cheese whey: (i) high temperature (55 °C) and a high organic loading rate (OLRA - 15 kgCOD m?3 d?1) right at the beginning of the operation; (ii) slowly increasing temperature up to 55 °C using a high OLRA and (iii) slowly increasing temperature and OLRA up to the desired condition. Strategy (iii) increased hydrogen productivity in 39% compared to the others. The combination of high temperature and low pH thermodynamically favored H2 producing routes. Synergy between Thermoanaerobacterium and Clostridium might have boosted hydrogen production. Three reactors of 41 m³ each would be needed to treat 3.4 × 103 m3 year?1 of whey (small-size dairy industry) and the energy produced could reach 14 MWh month?1.  相似文献   

11.
This study investigated the effect of pre-treatment and hydraulic retention time (HRT) on biohydrogen production from organic wastes. Various pre-treatments including thermal, base, acid, ultrasonication, and hydrogen peroxide were applied alone or in combination to enhance biohydrogen production from potato and bean wastewater in batch tests. All the pre-treated samples showed higher hydrogen production than the control tests. Hydrogen peroxide pre-treatment achieved the best results of 939.7 and 470 mL for potato and bean wastewater, respectively. Continuous biohydrogen production from sucrose, potato and bean wastewater was significantly influenced by reducing the HRT as 24, 18 and 12 h. Sucrose and potato showed similar behavior, where the hydrogen production rate (HPR) increased with decreasing the HRT. Optimum hydrogen yield results of 320 mL-H2/g-VS (sucrose) and 150 mL-H2/g-VS (potato) were achieved at HRT of 18 h. Bean wastewater showed optimum HPR of 0.65 L/L.d with hydrogen yield of 80 mL-H2/g-VS at 24 h HRT.  相似文献   

12.
Cerium (Ce3+) doped TiO2 powder was synthesized by a sol-gel method and characterized by Transmission Electron Microscope (TEM), X-ray Diffraction (XRD), UV–Vis Diffuse Reflectance Spectroscopy (UV-DRS), Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The Ce3+ doping strongly reduced the band gap of the TiO2 from 3.2 eV (UV) to 2.7 eV (visible region). The photocatalytic activity of Ce3+ doped TiO2 catalysts was evaluated by hydrogen production from sulphide wastewater under visible light illumination. The photocatalytic production of H2 was studied in a batch recycle tubular photocatalytic reactor. The results show that 0.4% Ce3+–TiO2 suspended in 500 mL of simulated sulphide wastewater irradiated at 150 W visible lamp produced maximum H2 of 6789 μmol h?1. It was noticed that the Ce3+ doped TiO2 performs well than Nano TiO2 and P25 TiO2 photocatalysts.  相似文献   

13.
The study evaluated a proper strategy for recovering hydrogen production in a pilot plant from methanogen invasion. The pilot biohydrgoen reactor with a working volume of 1 m3 was constructed and a stream of gluten manufacturing wastewater was used as the major substrate. When the gluten wastewater was introduced into the reactor, methane appeared in the biogas and hydrogen decreased to zero accumulation. By increasing the organic loading rate from 6.7 to 13.4 kg-COD/m3/d and reducing the hydraulic retention time from 1.5 to 1 day spontaneously, methanogens can be suppressed in 7 days. Besides, the total volatile fatty acids increase after the adjustment. However, high ethanol concentration in the influent revealed that only limited carbohydrate was available for biohydrogenation. The sugar content in the gluten wastewater can be degraded drastically in 5 days under both acidifying and alkalizing preservation conditions. 5 g/L ethanol and 3 g/L lactate was accumulated in the substrate storage tank resulting in limit carbohydrate for biohydrogenation under acidifying preservation condition. On the other hand, alkalizing preservation condition is a better approach and can preserve 80% of the carbohydrate within 2 days but various volatile fatty acids also accumulated without ethanol production. It is suggested that the gluten wastewater should be fed into the biohydrogen reactor as soon as possible and supplement such as solid organic wastes can also be introduced to maintain a proper organic loading rate and sustain bioactivity of biohydrogenation.  相似文献   

14.
The feasibility of hydrogen generation from palm oil mill effluent (POME), a high strength wastewater with high solid content, was evaluated in an anaerobic sequencing batch reactor (ASBR) using enriched mixed microflora, under mesophilic digestion process at 37 °C. Four different hydraulic retention times (HRT), ranging from 96 h to 36 h at constant cycle length of 24 h and various organic loading rate (OLR) concentrations were tested to evaluate hydrogen productivity and operational stability of ASBR. The results showed higher system efficiency was achieved at HRT of 72 h with maximum hydrogen production rate of 6.7 LH2/L/d and hydrogen yield of 0.34 LH2/g CODfeeding, while in longer and shorter HRTs, hydrogen productivity decreased. Organic matter removal efficiency was affected by HRT; accordingly, total and soluble COD removal reached more than 37% and 50%, respectively. Solid retention time (SRT) of 4-19 days was achieved at these wide ranges of HRTs. Butyrate was found to be the dominant metabolite in all HRTs. Low concentration of volatile fatty acid (VFA) confirmed the state of stability and efficiency of sequential batch mode operation was achieved in ASBR. Results also suggest that ASBR has the potential to offer high digestion rate and good stability of operation for POME treatment.  相似文献   

15.
A two-stage fermentation process combining hydrogen and methane production for the treatment of food waste was investigated in this paper. In hydrogen fermentation reactor, the indigenous mixed microbial cultures contained in food waste were used for hydrogen production. No foreign inoculum was used in the hydrogen fermentation stage, the traditional heat treatment of inoculum was not applied either in this bench scale experiment. The effects of the stepwise increased organic loading rate (OLR) and solid retention time (SRT) on integrated two-stage process were investigated. At steady state, the optimal OLR and SRT for the integrated two-stage process were found to be 22.65 kg VS/m3 d (160 h) for hydrogen fermentation reactor and 4.61 (26.67 d) for methane fermentation reactor, respectively. Under the optimum conditions, the maximum yields of hydrogen (0.065 m3 H2/kg VS) and methane (0.546 m3 CH4/kg VS) were achieved with the hydrogen and methane contents ranging from 29.42 to 30.86%, 64.33 to 71.48%, respectively. Biodegradability analysis showed that 5.78% of the influent COD was converted to the hydrogen in H2-SCRD and 82.18% of the influent COD was converted to the methane in CH4-SCSTR under the optimum conditions.  相似文献   

16.
Microbial fuel cell (MFC), a bioelectrochemical device, can be used to produce bioelectric signals from hydrogen carriers, particularly organic compounds in wastewaters. The solid correlation between the signals and the hydrogen carrier concentration can be exploited in a biosensor for measuring wastewater quality. A small volume of the membrane-less SCMFCs were operated with various wastewater concentrations to investigate the relationship between the concentration of substrates with the current outputs and the performance of the SCMFCs. The results demonstrated that the detection times of current outputs from low to high peak were significantly short when using a low synthetic wastewater (SW) concentration of 25–1000 mg COD.L?1. The correlation between the SW concentration and the current outputs was obtained up to 250 mg COD.L?1 (R2 = 0.96). When the SCMFCs were fed with distillery wastewater (DW) from low to high concentration (50–2000 mg COD.L?1), it showed a detection times of the current as short. SCMFCs had a good correlation between the concentration of DW and the current outputs obtained up to 1200 mg COD.L?1 (R2 = 0.97). Maximum substrate reduction was found more than 90% when the initial SW concentration was in the range of 25–1000 mg COD.L?1. While substrate reduction was more than 60% for the DW concentration in the range of 50–2000 mg COD, L?1 was operated. In other words, this membrane-less SCMFCs are able to be a long starvation (5 days) and a high repeatability of the current output in both wastewaters. Indications proved that the detection time of current and substrate degradation were dependant on concentrations, types of substrate, and types of MFC.  相似文献   

17.
Photofermentative hydrogen production by immobilized Rhodobacter capsulatus YO3 was carried out in a novel photobioreactor in sequential batch mode under indoor and outdoor conditions. Long-term H2 production was realized in a 1.4 L photobioreactor for 64 days using Rhodobacter capsulatus YO3 immobilized with 4% (w/v) agar on 5 mM sucrose and 4 mM glutamate. The highest hydrogen yield (19 mol H2/mol sucrose) and hydrogen productivity (0.73 mmol H2 L?1 h?1) were achieved indoors on 5 mM sucrose. The effect of initial sucrose concentration (5 mM, 10 mM, and 20 mM) on hydrogen production was also investigated. Sustained hydrogen production was carried out under natural, outdoor conditions as well. For the outdoor experiments, the highest hydrogen productivity and yield were obtained as 0.87 ± 0.06 mmol H2 L?1 h?1 and 6.1 ± 0.2 mol H2/mol sucrose, respectively on 10 mM sucrose. Furthermore, this system prevented sudden pH drops and fluctuations caused by the utilization of sucrose throughout the process. These results demonstrate that a proper immobilization setup can lead to long-term efficient and robust hydrogen production even under naturally varying conditions.  相似文献   

18.
The feasibility of operational strategies was investigated for hydrogen and methane production from food waste. Food waste was heat-treated at 70 °C and fed to a two-phase anaerobic sequencing batch fermenting system. Maximum hydrogen productivity of 1.19 m3 H2/m3 d was observed at a food waste concentration of 30 g carbohydrate/L, a hydraulic retention time of 2 d, and a solids retention time of 3.4 d. The effluent from hydrogenesis was efficiently converted to methane at an organic loading rate of up to 3.6 kg COD/m3.d. The methanogenic effluent was then recycled to the hydrogenesis reactor without any pretreatment. The recycled effluent not only successfully replaced external dilution water and decreased alkaline dosage by 75%, but also increased hydrogen production by 48%, resulting in hydrogen productivity of 1.76 m3/m3 d. The two-phase digestion with recycling would convert 91% of organic pollutants in food waste to hydrogen (8%) and methane (83%) without any external dilution water.  相似文献   

19.
The objective of this study was to investigate hydrogen production from alcohol wastewater using an anaerobic sequencing batch reactor (ASBR) under thermophilic operation and at a constant pH of 5.5. Under the optimum COD loading rate of 68 kg/m3d, the produced gas contained 43% H2 without methane and the system provided a hydrogen yield and specific hydrogen production rate of 130 ml H2/g COD removed and 2100 ml H2/l d, respectively, which were much higher than those obtained under the mesophilic operation. Under thermophilic operation, both nitrogen and phosphate uptakes were minimal at the optimum COD loading rate for hydrogen production and most nitrogen uptake was derived from organic nitrogen. Under the thermophilic operation for hydrogen production, the nutrient requirement in terms of COD:N:P was found to be 100:6:0.5, which was much higher than that for the methenogenic step for methane production under both thermophilic and mesophilic operations and for the acidogenic step for hydrogen production under mesophilic operation.  相似文献   

20.
The hydrogen production from potassium borohydride (KBH4) with the ethanolysis and hydrolysis reactions using the phosphoric acid as a catalyst is performed for the first time. KBH4 concentration, phosphoric acid concentration and temperature effects were investigated for the optimum hydrogen production from ethanolysis and hydrolysis reactions of KBH4. The maximum hydrogen production rates in the ethanolysis and hydrolysis reactions with 1 M phosphoric acid are 6423 and 4296 ml min?1g?1, respectively. At the same time, the ethanolysis and hydrolysis reactions with the 1 M acid concentration were completed within 7 and 9 s, respectively. The total conversions obtained for the volume ratio of KBH4/acid of (1:1) were 100%. The power law kinetic model is performed for the kinetic studies. The activation energies for the ethanolysis and hydrolysis reactions of KBH4 using phosphoric acid are found as 2.98 and 2.60 kJ mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号