首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
彭益群  潘雅琴 《稀有金属》1990,14(6):424-430
本文测试了Ti-10V-2Fe-3Al合金在700~950℃温度范围内,5×10~(-3)s~(-1)~10s~(-1)七个应变速率下的真应力-应变(σε)曲线,分析了变形组织,并对β区动态再结晶的形核机制进行了探讨。结果表明,在β区850~950℃下,应变速率ε=1s~(-1)~10s~(-1)范围内变形时,动态回复是主要软化机制,经计算得:应力指数n=4.1,激活能Q=195kJ/mol;当 ε≤10~(-1)s~(-1)时,有动态回复和动态再结晶两种软化机制,此时n=3.9,Q=157kJ/mol。α+β区变形时,有动态回复和动态再结晶两种软化机制。  相似文献   

2.
通过热模拟压缩试验,研究了等轴组织和魏氏组织Ti80合金在温度850~1000℃、应变速率0.01~10 s-1、变形量20%~60%条件下的热变形行为及组织演变.结果表明:Ti80合金为温度敏感型和应变速率敏感型材料,两相区变形时软化机制以动态再结晶为主,单相区变形时以动态回复为主.低应变速率条件下(0.01 s-1...  相似文献   

3.
采用THERMECMASTOR-Z热模拟试验机研究了TC11钛合金在变形温度780~1080℃,应变速率0.001~1 s-1范围的热变形行为,并采用金相显微镜研究了变形温度对TC11钛合金组织的影响,主要研究结果如下:变形温度对TC11钛合金的流动应力有显著影响,在较高温度或较低应变速率时,变形呈稳态流动特征;在较低温度或较高应变速率时,变形呈流变软化特征.在β单相区,当应变速率为1 s-1时,组织主要为拉长的β晶粒和少量的动态再结晶晶粒;当应变速率为O.01~0.1 s-1时,变形机制主要为动态再结晶;当应变速率在0.001 s-1附近时,变形机制为动态回复.在(α+β)两相区,变形温度870~960℃,应变速率0.001 s-1附近时,变形机制为超塑性.  相似文献   

4.
采用Gleeble-3500热模拟实验机对Cu-Cr-Zr合金进行了压缩变形实验,分析了在变形温度为25~700℃、应变速率为0.0001~0.1000s-1的条件下流变应力的变化规律,利用扫描电镜及透射电镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且变形温度和应变速率均对流变应力有显著的影响,流变应力随着变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感材料;当变形温度为400~500℃时,低应变速率(0.0001~0.0010 s-1)的真应力-真应变曲线呈现动态再结晶曲线特征,高应变速率(0.01~0.10 s-1)的真应力-真应变曲线呈现动态回复特征;在真应力-真应变曲线的基础上,采用双曲正弦模型能较好地描述Cu-Cr-Zr合金高温变形时的流变行为,建立了完整描述合金热变形过程中流变应力与应变速率和变形温度关系的本构方程,确定了合金的变形激活能为311.43 kJ·mol-1。  相似文献   

5.
对9Cr-2W耐热合金进行了热变形温度900~1300℃和应变速率0.005~5.000 s-1条件下热压缩模拟实验,分析该合金热变形应力应变曲线、热变形组织演变,并测试1150和1300℃下的热变形织构。结果表明,9Cr-2W耐热合金热变形软化方式主要与温度有关,在应变速率0.500 s-1时,900~1050℃出现明显加工硬化,为动态回复型;1100~1200℃动态再结晶新晶粒沿原晶界分布,为不连续动态再结晶型;1250~1300℃沿原晶界出现锯齿形,为几何动态再结晶型。同时,应变速率对热变形软化方式也有一定的影响,随着应变速率的提高,发生不连续动态再结晶温度范围变宽,细化晶粒效果明显。结合9Cr-2W耐热合金变形织构特征,1150℃热变形组织以动态回复为主,织构相对集中,晶粒择优取向强一些;而1300℃热变形组织基本为等轴晶粒,发生了完全动态再结晶,相对应织构漫散,择优取向相对弱一些。  相似文献   

6.
采用Gleeble-1500D热模拟机进行热压缩变性试验,研究7N01铝合金在变形温度为340 ~460℃、应变速率为0.01~ 10.00 s-1条件下的流变应力行为.结果表明:变形温度和应变速率对合金流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的增加而升高;合金在低应变速率(0.01,0.10,1.00s-1)时主要为动态回复软化机制,而在高应变速率(10.00 s-1)时出现动态再结晶软化;7N01铝合金的高温流变行为可用Zener-Hollomon参数描述.  相似文献   

7.
利用Gleeble-3500热模拟试验机在变形温度900~1 200℃和应变速率0.01~10 s-1范围内,对40Cr钢试样进行压缩实验。研究了40Cr钢真应力-应变曲线特征,建立了峰值应力、应变速率和变形温度间的本构方程,并确定了40Cr钢热变形激活能为310.625 kJ/mol。研究结果显示:40Cr钢热变形时的流变软化机制为动态回复和动态再结晶;随着变形温度增加和应变速率减小,流变应力减小;试样的变形温度越高,应变速率越低,显微组织中的动态再结晶越完全,并且动态再结晶晶粒越容易长大。  相似文献   

8.
利用Gleeble-1500D热模拟试验机对Cu-Cr-Zr-Ce合金在变形温度为600~800℃、应变速率为0.01~5 S-1条件下进行了热压缩试验,测定了其应力-应变曲线,并通过光学显微镜观察了其热压缩过程中的微观组织.结合两者分析了动态回复和再结晶机制.结果表明,动态再结晶是该合金软化的主要机制.  相似文献   

9.
文章研究工业纯铝在等温压缩过程中流变应力特征和微观组织的演变。结果表明:在同一应变速率0.01/s下,变形温度为220℃和300℃时,真应力-真应变曲线呈稳态特征,材料只发生了动态回复,当T≥380℃时,发生了动态再结晶;任同一变形温度460℃,不同应变速率(1/s,0.1/s,0.01/s,0.001/s)下变形时发生了动态再结晶;动态再结晶机制是连续动态再结晶和几何动态再结晶,其真应力-真应变曲线呈单峰特征?  相似文献   

10.
基于摩擦修正的TB8合金热压缩流变应力行为分析   总被引:2,自引:0,他引:2  
采用Gieeble-1500热模拟试验机对TB8(Ti-15Mo-2.7Nb-3Al-0.2Si)合金进行了等温热压缩变形试验,温度范围为750-1100℃,应变速率范围为0.01~1s-1.在热压缩过程中由于摩擦影响导致流变应力不能真实反映材料的高温变形行为.采取一种简便的方法对实验数据进行了摩擦修正,研究了TBS合金热变形流变应力行为,并对合金的变形机制进行了初步探讨.结果表明:热压缩过程中摩擦对于流动应力的影响十分显著,采取的修正方法降低了实验中摩擦引起的误差;TB8合金的热变形行为具有高度的变形温度和应变速率敏感性,随着变形温度的提高和应变速率的降低,真应力显著降低;动态回复和动态再结晶是TB8高温变形时主要软化机制.  相似文献   

11.
在Gleeble-3800热模拟机上对TC17钛合金进行热压缩实验,研究TC17钛合金棒材在变形温度为810℃~930℃、应变速率为10-2s-1~101s-1以及变形程度为20%~60%条件下的流变行为;利用金相显微镜分析TC17钛合金棒材在不同变形条件下的组织演化规律。结果表明:当应变速率与变形温度固定时,不同变形量对于TC17钛合金的流动应力曲线影响较小;当变形量与变形速率固定时,变形温度越高时,流变应力值越低,应力-应变曲线越稳定;当变形温度与变形量固定时,峰值应力随应变速率的减小而降低。变形中的软化机制主要以动态回复和动态再结晶为主。  相似文献   

12.
稀土Ce对IF钢高温变形行为的影响   总被引:1,自引:0,他引:1  
研究了稀土Ce对对IF钢的的高温变形行为的影响。在Gleeble~(-1)500D热模拟试验机上将不同铈含量IF钢在真空条件下,以10℃/s加热到1 250℃,均温5 min,然后以5℃/s的分别冷却到1 100℃、1 000℃、900℃、800℃,保温30 s,再分别以10~(-2)s~(-1)、1 s~(-1)进行压缩50%,最后沿纵向切开,观察压缩后组织。结果表明:IF钢以低应应变速率变性时动态再结晶是主要的软化机制,以高应变速率压缩时动态回复是主要的软化机制;IF钢的变形抗力随稀土铈含量的增加而增大;铈对再结晶具有抑制作用。  相似文献   

13.
在Gleeble-3500热模拟试验机上对Ti-25Al-14Nb-2Mo-1Fe合金进行了等温恒应变速率压缩试验,研究了在变形温度为950~1 100℃,应变速率为0.001~1 s-1,最大变形程度为50%的条件下合金的热压缩变形流变应力行为与微观组织演变。结果表明:Ti-25Al-14Nb-2Mo-1Fe合金的流变应力对变形温度和应变速率均较为敏感,其流变应力曲线具有应力峰值、流变软化和稳态流变的特征。在变形温度为950℃,应变速率为0.001~0.1 s-1的条件下,Ti-25Al-14Nb-2Mo-1Fe合金的热变形特性为片层组织球化,其热变形机制可用晶界分离球化模型进行解释说明;在变形温度为1 000~1 100℃,应变速率为1 s-1的条件下,材料只发生了动态回复现象;在变形温度为1 050~1 100℃,应变速率为0.001~0.1 s-1的条件下,材料发生了动态再结晶现象。  相似文献   

14.
生物医用Ti-6Al-7Nb合金高温变形行为研究   总被引:2,自引:0,他引:2  
金哲  张万明 《稀有金属》2012,36(2):218-223
为了研究用于外科植入生物材料Ti-6Al-7Nb合金的热变形行为,利用Gleeble 2000热模拟实验机对Ti-6Al-7Nb合金在750~900℃温度范围和0.001~10.000 s-1应变速率范围内进行等温热压缩实验,试验在氩气保护下进行,采用金相显微镜和透射电镜观察热变形后的组织;通过计算变形激活能分析Ti-6Al-7Nb合金在热压缩过程中的变形机制。结果表明:流变应力在经历加工硬化阶段后均表现出流变软化现象,在较低应变速率ε=0.001~0.100 s-1时,材料的软化主要受α相动态再结晶影响;而在较高应变速率ε=1~10 s-1时,材料基本不发生再结晶,其软化是由于钛合金在变形过程中的绝热效应造成的。通过Arrhenius方程计算出合金在750,800,850和900℃下的变形激活能分别为209.25,196.01,194.01和130.40 kJ.mol-1;在750~850℃下的激活能接近于α-Ti的自扩散激活能(200 kJ.mol-1),表明在750~850℃的变形由α-Ti自扩散参与的动态再结晶控制;在900℃下激活能略低于β-Ti的自扩散激活能(160 kJ.mol-1),说明在900℃下的变形机制由β相的动态回复控制。综合考虑变形行为与组织细化因素,温度在750~850℃,变形速率在0.01~0.10 s-1范围为良性热加工区域。  相似文献   

15.
热变形参数对X60管线钢高温变形行为和显微组织的影响   总被引:1,自引:1,他引:0  
通过热模拟试验测定了X60级管线钢以0.1-20s^-1的应变速率在900-1050℃温度区间压缩变形过程中的真应力-真应变曲线,观察了变形后空冷至室温的显微组织,结果表明:在此变形条件下,材料没有发生动态再结晶,但随着变形温度的升高和变形速率的下降,将出现动态回复 现象;低温和大变形速率变形能细化铁素体晶粒组织。  相似文献   

16.
用Gleeble-1500型热模拟机研究TC4-DT钛合金在850~1 100℃、应变速率0.001~10 s-1、变形量70%条件下的高温压缩热变形行为,分析了该合金的流变应力行为以及显微组织演变规律,建立了该合金的本构关系模型以及热加工图。研究结果表明,TC4-DT钛合金在两相区和β相区的热变形激活能分别为544.03 k J·mol-1和264.32 k J·mol-1,分别大于纯α相和纯β相的自扩散激活能,表明TC4-DT钛合金热变形由高温扩散以外的过程控制。在两相区热变形时,原始组织发生了不同程度的球化,且变形温度越低球化效果越好。在β相区热变形时,低应变速率下(0.001~0.1 s-1)主要发生动态再结晶,而高应变速率(1~10 s-1)下主要发生动态回复,动态再结晶行为受到抑制。TC4-DT钛合金的失稳区主要分布在低温高应变速率区域,变形温度主要在850~940℃,应变速率主要在0.1~10 s-1,功率耗散率η值小于28%。  相似文献   

17.
Q235钢的热变形特性   总被引:1,自引:0,他引:1  
通过热模拟压缩试验,研究了Q235钢热变形时的动态再结晶行为,确定了其热变形激活能,建立了峰值应力、峰值应变、晶粒尺寸与Zener-Hollomon参数之间的关系模型.结果表明:Q235钢的动态再结晶主要发生在形变温度≥900℃、应变速率≤5 s-1(即lnZ≤37.77)的条件下.  相似文献   

18.
利用Gleeble-1500热模拟实验机,对2524铝合金进行高温等温压缩试验,实验变形温度为300~500℃,应变速率为0.01~10 s-1的条件下,研究了2524铝合金的流变变形行为。结果表明:合金流变应力的大小跟变形温度和应变速率有很大关联,2524铝合金真应力-应变曲线中,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征,而峰值流变应力随变形温度的降低和应变速率的升高而增大;在流变速率ε为10 s-1,变形温度300℃以上时,应力出现锯齿波动,合金表现出动态再结晶特征。采用温度补偿应变速率Zener-Hollomon参数值来描述2524铝合金在高温塑性变形流变行为时,其变形激活能Q为216.647 kJ/mol。在等温热压缩形变中,合金可加工条件为:高应变速率(>0.5 s-1)或低应变速率(0.01 s-1~0.02 s-1)、高应变温度(440℃~500℃)。  相似文献   

19.
40Cr10Si2Mo钢的热变形模型及动态再结晶行为   总被引:1,自引:0,他引:1  
王庆娟  王钦仁  杜忠泽  何泽恩  党雪  齐泽江 《钢铁》2021,56(11):112-121
 为了优化马氏体耐热钢40Cr10Si2Mo的热轧生产工艺参数,建立线棒材轧制数字化设计及智能化系统数据库,在Gleeble-3500热模拟机上对马氏体耐热钢40Cr10Si2Mo进行单道次热压缩试验,研究了该钢在温度为900~1 100 ℃、应变速率为0.1~20 s-1条件下的应变补偿本构方程及动态再结晶行为,为探索塑性变形行为和组织优化提供理论依据。结果表明,应力随变形温度的升高而减小,随应变速率的增加而增加。温度和应变速率对热变形抗力(真应力)的影响主要取决于在塑性变形过程中,金属内部发生的加工硬化与动态回复、再结晶等软化机制交互作用的结果。建立了双曲正弦(Arrhenius)本构模型。对比发现所建立的本构模型预测值与试验值相关系数R2为0.983 97,平均相对误差(AARE)为4.531%。采用对σ-ε曲线进行4次多项式拟合并求导的方法,分析了40Cr10Si2Mo钢的软化过程以及不同温度和应变速率下动态再结晶的临界条件。阐述了动态再结晶的临界条件与lnZ(Zener-Hollomon参数)值的关系。发现40Cr10Si2Mo钢在lnZ值小于63时,动态再结晶的临界应变随lnZ值的增大而增大。在lnZ值大于63时,动态再结晶的临界应变随lnZ值的增大变化不明显。对比了40Cr10Si2Mo钢的微观组织,发现在1 100 ℃/0.1 s-1条件下晶粒发生了相互吞食合并,部分再结晶晶粒没有长大,最终导致混晶组织出现。然而增加应变速率有助于动态再结晶晶粒的细化。  相似文献   

20.
使用Gleeble-3500热模拟试验机对A100超高强度钢在应变速率为0.01~10 s-1、变形量为63.3%、变形温度为850~1 200℃条件下的流变应力行为进行了试验研究,并结合微观组织分析了不同变形条件下动态再结晶行为。结果表明:A100钢热压缩变形中流变应力随温度的增加而降低,随应变速率的增加而增加。在850℃变形时主要发生动态回复,在变形温度为900~1 200℃、应变速率为0.01~10 s-1均发生动态再结晶。基于Arrhenius双曲正弦模型,利用线性回归方法建立了高强钢A100的本构方程,为A100钢的数值模拟和热加工工艺的制定提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号