共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
大跨度多塔悬索桥主鞍座两侧主缆钢丝与鞍座材料间受恒载、车载、风荷载以及腐蚀环境耦合作用产生摩擦腐蚀疲劳行为,导致钢丝承载强度渐变劣化,严重影响主缆承载安全性。因此,研究主缆钢丝与鞍座材料摩擦腐蚀疲劳行为至关重要。搭建钢丝摩擦腐蚀疲劳试验台开展钢丝与鞍座材料摩擦腐蚀疲劳实验,运用超景深电子显微镜、扫描电子显微镜考察主缆钢丝磨损轮廓、磨损机理、磨损系数和横截面失效面积特性;通过万能试验机并结合损伤力学理论和有限元法,建立疲劳钢丝损伤度演化模型和钢丝承载强度劣化模型。结果表明:钢丝摩擦因数呈迅速增加-减小-增加-稳定趋势,随接触载荷增大而减小,随疲劳载荷增大而增大;磨损轮廓随疲劳次数近似线性增加,失效面积随疲劳次数近似抛物线增加,二者随接触载荷和疲劳载荷的增大均增加;磨损系数在磨损稳定期减小,随疲劳次数增加小幅度增长;磨损机理以黏着磨损、磨粒磨损、疲劳磨损和腐蚀磨损为主;钢丝损伤度与疲劳次数呈二次函数关系;接触载荷和疲劳载荷的增加,导致钢丝损伤度增大、承载强度降低。结果对悬索桥主缆损伤及承载安全性能评估具有理论指导意义。 相似文献
7.
正(接上期)主缆及索夹安装主缆是悬索桥的主要承重构件,其防腐及抗疲劳等性能直接决定桥梁的使用寿命。现代悬索桥主缆一般采用强度高、弹性模量高、空隙率低、防锈蚀能力强的镀锌高强度平行钢丝索。主缆的施工方法一般采用预制平行索股法(PPWS法)和空中纺丝法(AS法)。预制平行索股法是 相似文献
8.
根据Davenpot功率谱、Wiener-Khintchine定理、Shinozuka定理模拟脉动风时程曲线;使用Monte-Carlo法、有限元分析方法、matlab软件提取计算用脉动风并对主缆检修车主桁架进行风振响应特性研究。研究结果表明:基于蒙特卡洛法提取的计算用脉动风正确有效,该提取方法可应用到相关的工程抗风设计中。在自然风载荷的作用下,主桁架危险点的位移主要产生在侧向与竖向,而且主桁架在风载荷静力作用下的响应计算是可靠的。Davenport风速谱的函数规律决定,在140m高空模拟的最大总风速小于设计风速。 相似文献
9.
正悬索桥结构是跨度最大的桥梁结构,在基础施工困难的水域或沟壑地区,悬索桥可以一跨跨越。由于横向、竖向刚度相对较弱,铁路桥梁中未采用悬索桥结构。悬索桥的结构形式现代悬索桥跨度一般在600m以上,主要由索塔、锚碇、主缆、吊索、加劲梁组成。小跨度悬索桥可以采用自锚方式,不设置体外锚碇,一般采用支架法施工。图1为悬索桥。 相似文献
10.
11.
12.
以世界第一大跨度三塔悬索桥——泰州长江公路大桥为研究对象,基于ANSYS建立了该桥的三维有限元模型,并采用子空间迭代法对其进行了模态分析,得到了该桥的相关动力特性参数并对其进行了分析。在此基础上根据该桥的结构型式和受力特点,重点研究了矢跨比、中塔刚度、中塔形式以及土桩结构作用等关键参数对结构动力特性的影响,深入分析了该桥动力特性随上述结构关键参数的变化趋势。结果表明,增大主缆矢跨比、提高中塔纵向刚度有利于改善大桥的颤振性能。所得结论可为大跨度三塔悬索桥的动力设计和研究工作提供参考。 相似文献
13.
车辆悬架振动控制系统研究的进展 总被引:31,自引:3,他引:31
阐述了车辆悬架振动控制系统的基本类型半主动控制和主动控制的理论模型以及几种典型的液力主动控制系统。在综 现有的各种悬架控制方法基础上,着重论述了模糊控制,神经网络控制,模糊神经网络控制等方法在车辆悬架控制系统中的应用。 相似文献
14.
为探讨中塔对大跨度三塔连跨悬索桥抖振性能的影响,以世界第一大跨度三塔连跨悬索桥——泰州大桥为研究对象,通过基于有限元的结构非线性时域分析,研究了中塔型式和中塔纵向刚度对大跨度三塔连跨悬索桥风致抖振响应的影响。实测模态参数与计算模态参数的对比验证了所建立有限元模型的准确性。研究结果表明:相比人型中塔,A型中塔可显著降低主梁扭转抖振位移并削弱竖向与横向位移响应;主梁侧向抖振位移几乎不受中塔纵向刚度的影响,增加中塔纵向刚度可以一定程度上抑制主梁竖向及扭转抖振位移响应;中塔纵向刚度变化对边塔平动抖振位移影响微弱,在一定范围内增加中塔纵向刚度可以显著降低中塔顺桥向平动和扭转抖振位移,同时在略微增加边塔扭转抖振位移的前提下可以一定程度上抑制中塔横桥向平动抖振位移。 相似文献
15.
建立某电动汽车麦弗逊悬架系统的虚拟模型,对轮胎横向滑移量进行仿真。对该悬架系统进行试验研究,测量轮胎的实际横向滑移量。仿真结果和试验结果之间的误差小于7%,说明该虚拟模型是精确的。以轮胎横向滑移量为目标函数,利用虚拟模型对该悬架系统的结构参数进行优化研究,结果表明在设计变量的取值范围内和约束条件下,目标函数存在着多个极值点,需要选择多个初始点进行优化,才能得到更好的结果。 相似文献
16.
17.
研究了高低压腔气路闭环空气悬架系统充放气过程中的能耗问题。基于热力学和车辆动力学理论建立了气路闭环空气悬架充放气模型并在Simulink中仿真,通过1/2车对空气弹簧进行充放气实验,实验结果验证了所建立的充放气模型的正确性。为分析研究闭环系统能量损耗途径,采用压缩气体有效能(即压缩气体对外界大气所做的功)对系统充气、放气、升压三个过程的能量损耗进行量化计算。仿真结果表明:充气过程中能耗随高压腔压力升高而变大;放气与升压过程中的能耗都随低压腔压力升高而降低;在同等条件下,高低压腔气路闭环系统相对开环系统可以节约大量的能量。 相似文献
18.
19.