首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A system-oriented approach for the design of a UMTS/GSM dual-standard ΔΣ modulator is presented to demonstrate the feasibility of achieving intermediate frequency (IF) around 100 MHz, high dynamic range, and low power consumption at the same time. The circuit prototype implements 78 MHz IF for GSM and 138.24 MHz for wideband code division multiple access (WCDMA), which are set to be 3/4 of the analog-to-digital converter sampling rate. A two-path IF sampling and mixing topology with a low-pass ΔΣ modulator, run at half the sampling rate, is used. Implemented in 0.25-μm CMOS, the circuit achieves dynamic range and peak signal-to-noise and distortion ratio for GSM of 86 and 72 dB, respectively. The corresponding values for WCDMA are 54 and 52 dB, respectively. Optimization is performed at all stages of design to minimize power consumption. The complete circuit consumes less than 11.5 mW for GSM and 13.5 mW for WCDMA at 2.5-V supply, of which 8 mW is due to the analog part  相似文献   

2.
A MASH bandpass $\Upsigma\Updelta$ modulator for wide-band code division multiple access (WCDMA) applications is presented. The signal bandwidth of the proposed modulator is 10?MHz centered around an intermediate frequency (IF) of 70.5?MHz. Two two-path second-order bandpass $\Upsigma\Updelta$ modulators make the MASH architecture, which realizes a noise transfer function with four couples of complex conjugate zeros. The proposed circuit, fabricated with a 0.18???m CMOS technology, uses a sampling frequency of 180?MHz to obtain a resolution of about 12?bits in the 10?MHz bandwidth around the IF. The measured modulator power consumption is 95?mW with a supply voltage of 1.8?V. The achieved figure-of-merit (FoM BP ) is 0.37?pJ/conversion-level.  相似文献   

3.
A feedforward compensation scheme with no Miller capacitors is proposed to overcome the bandwidth limitations of traditional Miller compensation schemes. The technique has been used in the design of an operational transconductance amplifier (OTA) with a dc gain of 80 dB, gain bandwidth of 1.4 GHz, phase margin of 62/spl deg/, and 2 ns settling time for 2-pF load capacitor in a standard 0.35-/spl mu/m CMOS technology. The OTA's current consumption is 4.6 mA. The OTA is used in the design of a fourth-order switched-capacitor bandpass /spl Sigma//spl Delta/ modulator with a clock frequency of 92 MHz. It achieves a peak signal-to-noise ratio of 80 and 54 dB for 270-kHz (GSM) and 3.84-MHz (CDMA) bandwidths, respectively and consumes 19 mA of current from a /spl plusmn/1.25-V supply.  相似文献   

4.
This paper presents a CMOS 0.8-μm switched-current (SI) fourth-order bandpass ΣΔ modulator (BP-ΣΔM) IC capable of handling signals up to 1.63 MHz with 105-bit resolution and 60-mW power consumption from a 5-V supply voltage. This modulator Is intended for direct A/D conversion of narrow-band signals within the commercial AM band, from 530 kHz to 1.6 MHz. Its architecture is obtained by applying a low-pass-to-bandpass transformation (z-1 →-z-2) to a 1-bit second-order low-pass ΣΔ modulator (LP-ΣΔM). The design of basic building blocks is based upon a detailed analysis of the influence of SI errors on the modulator performance, followed by design optimization. Memory-cell errors have been identified as the dominant ones. In order to attenuate these errors, fully differential regulated-folded cascode memory cells are employed. Measurements show a best SNR peak of 65 dB for signals of 10-kHz bandwidth and an intermediate frequency (IF) of 1.63 MHz. A correct noise-shaping filtering is achieved with a sampling frequency of up to 16 MHz  相似文献   

5.
The design and experimental results of a 2.7 V 50 MHz switched-capacitor DS modulator in a 0.35 μm BiCMOS process are presented. The circuit is targeted for the IF section of a radio receiver in a GSM cellular phone. It combines frequency downconversion with analogue to digital conversion by directly sampling an input signal from an IF of 50 MHz. The measured peak signal-to-noise ratio for a 100 kHz bandwidth is 81 dB with a 53 MHz blocking signal and the measured IIP3 for IF input is +36.9 dBV  相似文献   

6.
A wide bandwidth continuous-time sigma-delta ADC, operating between 20 and 40 MS/s output data rate, is implemented in 130-nm CMOS. The circuit is targeted for applications that demand high bandwidth, high resolution, and low power, such as wireless and wireline communications, medical imaging, video, and instrumentation. The third-order continuous-time SigmaDelta modulator comprises a third-order RC operational-amplifier-based loop filter and 4-bit internal quantizer operating at 640 MHz. A 400-fs rms jitter LC PLL with 450-kHz bandwidth is integrated, generating the low-jitter clock for the jitter-sensitive continuous-time SigmaDelta ADC from a single-ended input clock between 13.5 and 40 MHz. To reduce clock jitter sensitivity, nonreturn-to-zero (NRZ) DAC pulse shaping is used. The excess loop delay is set to half the sampling period of the quantizer and the degradation of modulator stability due to excess loop delay is avoided with a new architecture. The SigmaDelta ADC achieves 76-dB SNR, -78-dB THD, and a 74-dB SNDR or 12 ENOB over a 20-MHz signal band at an OSR of 16. The power consumption of the CT SigmaDelta modulator itself is 20 mW and in total the ADC dissipates 58 mW from the 1.2-V supply  相似文献   

7.
In this paper, the design of a continuous-time baseband sigma-delta (ΣΔ) modulator with an integrated mixer for intermediate-frequency (IF) analog-to-digital conversion is presented. This highly linear IF ΣΔ modulator digitizes a GSM channel at intermediate frequencies up to 50 MHz. The sampling rate is not related to the input IF and is 13.0 MHz in this design. Power consumption is 1.8 mW from a 2.5-V supply. Measured dynamic range is 82 dB, and third-order intermodulation distortion is -84 dB for two -6-dBV IF input tones. Two modulators in quadrature configuration provide 200-kHz GSM bandwidth. Active area of a single IF ΣΔ modulator is 0.2 mm2 in 0.35-μm CMOS  相似文献   

8.
The authors examine the application of oversampling techniques to analog-to-digital conversion at rates exceeding 1 MHz. A cascaded multibit sigma-delta (ΣΔ) modulator that substantially reduces the oversampling ratio required for 12-b conversion while avoiding stringent component matching requirements is introduced. Issues concerning the design and implementation of the modulator are presented. At a sampling rate of 50 MHz and an oversampling ratio of 24, an implementation of the modulator in a 1-μm CMOS technology achieves a dynamic range of 74 dB at a Nyquist conversion rate of 2.1 MHz. The experimental modulator is a fully differential circuit that operates from a single 5-V power supply and does not require calibration or component trimming  相似文献   

9.
This paper describes a 0.35-/spl mu/m CMOS fourth-order bandpass analog-digital sigma-delta (/spl Sigma//spl Delta/) modulator for wide-band base stations receivers. The modulator, based on a time-interleaved four-path architecture, achieves an equivalent sampling frequency of 280 MHz, although the building blocks operate at only 70 MHz. In measurements, the prototype chip achieves a dynamic range of 72 dB (12 bits of resolution) with a signal bandwidth of 4.375 MHz centered around an intermediate frequency of 70 MHz. The measured spurious-free dynamic range is 69 dB. The /spl Sigma//spl Delta/ modulator dissipates 480 mW from a 3.3-V supply, including voltage reference buffers and output pads with high-driving capabilities, and occupies 20 mm/sup 2/ of silicon area.  相似文献   

10.
A fourth-order switched-capacitor bandpassΣ△modulator is presented for digital intermediatefrequency (IF) receivers.The circuit operates at a sampling frequency of 100 MHz.The transfer function of the resonator considering nonidealities of the operational amplifier is proposed so as to optimize the performance of resonators.The modulator is implemented in a 0.13-μm standard CMOS process.The measurement shows that the signal-to-noise-and-distortion ratio and dynamic range achieve 68 dB and 75 dB,respectively,over a bandwidth of 200 kHz centered at 25 MHz,and the power dissipation is 8.2 mW at a 1.2 V supply.  相似文献   

11.
A fully differential 80 MHz fourth-order bandpass ΔΣ modulator, meant for a 100 MHz GSM/WCDMA multimode IF receiver, is presented. The modulator is based on a double-delay single opamp SC-resonator structure which is well suited for low supply voltages. Furthermore, the centre frequency of the topology is insensitive to different component variances. The measured peak SNR is 78 dB and 43.3 dB for 270 kHz (GSM) and 3.84 MHz (WCDMA) bandwidths, respectively  相似文献   

12.
A delta-sigma (/spl Delta//spl Sigma/) analog-to-digital converter featuring 68-dB dynamic range and 64-dB signal-to-noise ratio in a 1-MHz bandwidth centered at an intermediate frequency of 2 MHz with a 48-MHz sample rate is reported. A second-order continuous-time modulator employing 4-bit quantization is used to achieve this performance with 2.2 mW of power consumption from a 1.8-V supply. The modulator including references occupies 0.36 mm/sup 2/ of die area and is implemented in a 0.18-/spl mu/m five-metal single-poly digital CMOS process.  相似文献   

13.
This paper examines the architecture, design, and test of continuous-time tunable intermediate-frequency (IF) fourth-order bandpass delta-sigma (BP ΔΣ) modulators. Bandpass modulators sampling at high IFs (~100 MHz) allow direct sampling of the RF signal-reducing analog hardware and make it easier to realize completely software programmable receivers. This paper presents circuit design of and test results from continuous-time fourth-order BP ΔΣ modulators fabricated in AlInAs/GaInAs heterojunction bipolar technology with a peak unity current gain cutoff frequency (fT) of 80 GHz and a maximum frequency of oscillation (fMAX) of about 130 GHz. Operating from ±5-V power supplies, a fabricated 180-MHz IF fourth-order ΔΣ modulator sampling at 4 GS/s demonstrates stable behavior and achieves 75.8 dB of signal-to-(noise+distortion)-ratio (SNDR) over a 1-MHz bandwidth. Narrowband performance (~1 MHz) performance of these modulators is limited by thermal/device noise while broadband performance (~60 MHz), is limited by quantization noise. The high sampling frequency (4 GS/s) in this converter is dictated by broadband (60 MHz) performance requirements  相似文献   

14.
A 1-V 10.7-MHz fourth-order bandpass delta-sigma modulator using two switched opamps (SOPs) is presented. The 3/4 sampling frequency and the double-sampling techniques are adapted for this modulator to relax the required clocking rate. The presented modulator can not only reduce the number of SOPs, but also the number of capacitors. It has been implemented in 0.25-/spl mu/m 1P5M CMOS process with MIM capacitors. The modulator can receive 10.7-MHz IF signals by using a clock frequency of 7.13 MHz. A dynamic range of 62 dB within bandwidth of 200 kHz is achieved and the power consumption of 8.45 mW is measured at 1-V supply voltage. The image tone can be suppressed by 44 dB with respect to the carrier. The in-band third-order intermodulation (IM3) distortion is -65 dBc below the desired signal.  相似文献   

15.
Three fully differential bandpass (BP) /spl Delta//spl Sigma/ modulators are presented. Two double-delay resonators are implemented using only one operational amplifier. The prototype circuits operate at a sampling frequency of 80 MHz. The BP /spl Delta//spl Sigma/ modulators can be used in an intermediate-frequency (IF) receiver to combine frequency downconversion with analog-to-digital conversion by directly sampling an input signal from an IF of 60 MHz to a digital IF of 20 MHz. The measured peak signal-to-noise-plus-distortion ratios are 78 dB for 270 kHz (GSM), 75 dB for 1.25 MHz (IS-95), 69 dB for 1.762 MHz (DECT), and 48 dB for 3.84 MHz (WCDMA/CDMA2000) bandwidths. The circuits are implemented with a 0.35-/spl mu/m CMOS technology and consume 24-38 mW from a 3.0-V supply, depending on the architecture.  相似文献   

16.
This brief proposes an electromechanical-filter-based continuous-time (CT) bandpass (BP) sigma-delta modulator for wideband digitization at high intermediate frequency (> 70 MHz). Both the mechanically coupled microelectromechanical system and the longitudinally coupled surface acoustic wave (SAW) filters can be employed as loop filters. The advantages of the electromechanical filter are its low power consumption and accurate center frequency without the need for tuning. As a proof of concept, a fourth-order BP sigma-delta modulator is demonstrated with a 110-MHz SAW filter. Realized in a 0.35- mum SiGe heterojunction-bipolar-transistor bipolar complimentary metal-oxide-semiconductor technology, the prototype chip is clocked at 440 MHz and achieves 65-dB DR and 60-dB SNDR over 1 MHz, as well as 58-dB DR and 53-dB SNDR over the 3.84-MHz signal band. The total power consumption is 57 mW under a 3-V supply.  相似文献   

17.
A second-order integrated LC bandpass delta-sigma modulator is presented. This modulator is implemented in a 0.5-μm bipolar process and can be used for digitizing radio frequency or high intermediate frequency signals. It employs an integrated LC resonator with active Q-enhancement and two nonreturn-to-zero digital-to-analog pulse-shaping feedback loops. The modulator test chip achieves a signal-to-noise ratio of 57 dB over a 200-kHz bandwidth for converting a 950-MHz signal, and dissipates 135 mW with a 5-V supply  相似文献   

18.
The design, analysis and implementation of a multi-stage noise shaping (MASH) bandpass modulator that employs a differentially quantized error feedback modulator (DQEFM) structure is described. The re-configurability, reduction of power-hungry active blocks and reduced sensitivity to circuit non-idealities makes this proposed bandpass modulator a suitable candidate for a digital intermediate frequency receiver system. The mathematical analysis and simulation results indicate the resemblance of the proposed modulator with the conventional sigma-delta modulator. The circuit level simulations indicate the better performance of the proposed modulator in terms of hardware complexity and power. The proposed cascaded modulator when implemented using 45nm CMOS process attains a signal-to-noise plus distortion ratio of 81.4 dB for a bandwidth of 200 kHz (GSM) and 61 dB for a bandwidth of 5 MHz (WCDMA). The circuit level simulation of the proposed bandpass architecture indicates a power consumption of 3.7 mW and 6.9 mW for GSM and WCDMA modes with 1V supply.  相似文献   

19.
This paper presents a quadrature bandpass /spl Sigma//spl Delta/ modulator with continuous-time architecture. Due to the continuous-time architecture and the inherent anti-aliasing filter, the proposed /spl Sigma//spl Delta/ modulator needs no additional anti-aliasing filter in front of the modulator in contrast to quadrature bandpass /spl Sigma//spl Delta/ modulators with switched-capacitor architectures. The second-order /spl Sigma//spl Delta/ modulator digitizes complex analog I/Q input signals at 1-MHz intermediate frequency and operates within a clock frequency range of 25-100 MHz. The modulator chip achieves a peak signal-to-noise-distortion ratio (SNDR) of 56.7 dB and a dynamic range of 63.8 dB within a 1-MHz signal bandwidth and at a clock frequency of 100 MHz. Furthermore, it provides an image rejection of at least 40 dB. The 0.65-/spl mu/m BiCMOS chip consumes 21.8 mW at 2.7-V supply voltage.  相似文献   

20.
The high frequency (HF) behavior of the switched-capacitor (SC) LDI ladder filter is studied. This study shows that using low sampling frequency with respect to the cutoff frequency reduces the HF error due to the reduction in amplifier gain. Design techniques are also given for the HF SC filters, such as double-sampling scheme, a low sampling frequency with an exact synthesis algorithm, as well as a fast-settling folded-cascode amplifier. These techniques are applied to an experimental fifth-order elliptic SC filter fabricated in a 2-/spl mu/m CMOS technology. The experimental results show that a 3.6-MHz cutoff frequency is attained. All the capacitors are scaled down in order to reduce the setting time of the amplifiers. The active area of the filter is 0.9 mm/SUP 2/. The F/SUB sampling//F/SUB cutoff/ is only 5. The circuit operates from /spl plusmn/5 V and typically dissipates 80 mW when sampled at 18 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号