首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence anisotropy capillary electrophoresis (FACE) and affinity probe capillary electrophoresis (APCE) with laser-induced fluorescence detection were evaluated for analysis of peptide-protein interactions with rapid binding kinetics. The Src homology 2 domain of protein SH2-Bbeta (SH2-Bbeta (525-670)) and a tyrosine-phosphorylated peptide corresponding to the binding sequence of JAK2 were used as a model system. For peptide labeled with fluorescein, the K(d) = 82 +/- 7 nM as measured by fluorescence anisotropy (FA). APCE assays had a limit of detection (LOD) of 100 nM or 12 amol injected for SH2-Bbeta (525-670). The separation time of 4 s, achieved using an electric field of 2860 V/cm on 7-cm-long capillaries, was on the same time scale as complex dissociation allowing K(d) (101 +/- 12 nM in good agreement with FA measurements) and dissociation rate (k(off) = 0.95 +/- 0.02 s(-)(1) corresponding to a half-life of 0.73 s) to be determined. This measurement represents a 30-fold higher rate of complex dissociation than what had previously been measurable by nonequilibrium CE analysis of equilibrium mixtures. Using FACE, the protein was detected with an LOD of 300 nM or 7.5 fmol injected. FACE was not used for determining K(d) or k(off); however, this method provided better separation resolution for multiple forms of the protein than APCE. Both methods were found suitable for analysis of cell lysate. These results demonstrate that FACE and APCE may be useful complements to existing techniques for exploring binding interactions with rapid kinetics.  相似文献   

2.
A novel approach to detecting affinity interactions that combines fluorescence anisotropy with capillary electrophoresis (FACE) was developed. In the method, sample is injected into a capillary filled with buffer that contains a fluorescent probe that possesses low fluorescence anisotropy. If proteins or other large molecules in the sample bind the fluorescent probe, their migration through the capillary can be detected as a positive anisotropy shift. Thus, the method provides both separation and confirmation of binding to the probe. Calculations based on combining the Perrin equation and dissociation constant were used to predict the effect of conditions on aniostropy detection. These calculations predict that low probe concentrations yield the best sensitivity while higher concentrations increase the dynamic range for detection of binding partner. The assay was applied to detection of G proteins using BODIPY FL GTPgammaS as the fluorescent probe. Experimental measurements exhibited trends in anisotropy with varying probe and protein concentrations that were consistent with the calculations. The limit of detection for G(alphai1) was 3 nM when the electrophoresis buffer contained 250 nM BODIPY FL GTPgammaS. FACE affinity assay is envisioned as a method that can quantify selected binding partners and screen complex samples for compounds that possess affinity for a particular small molecule that is used as a probe.  相似文献   

3.
A capillary electrophoresis laser-induced fluorescence (CE-LIF) assay was developed for detection of adenylyl cyclase (AC) activity using BODIPY FL ATP (BATP) as substrate. In the assay, BATP was incubated with AC and the resulting mixture of BATP and enzyme product (BODIPY cyclic AMP, BcAMP) separated in 5 min by CE-LIF. Substrate depletion and product accumulation were simultaneously monitored during the course of the reaction. The rate of product formation depended upon the presence of AC activators forskolin or Galpha(s)-GTPgammaS as evidenced by a more rapid BATP turnover to BcAMP compared to basal levels. The CE-LIF assay detected EC50 values for forskolin and Galpha(s)-GTPgammaS of 27 +/- 6 microM and 317 +/- 56 nM, respectively. These EC50 values compared well to those previously reported using [alpha-32P]ATP as substrate. When AC was concurrently activated with 2.5 microM forskolin and 25 nM Galpha(s)-GTPgammaS, the amount of BcAMP formed was 3.4 times higher than the additive amounts of each activator alone indicating a positively cooperative activation by these compounds in agreement with previous assays using radiolabeled substrate. Inhibition of AC activity was also demonstrated using the AC inhibitor 2'-(or-3')-O-(N-methylanthraniloyl) guanosine 5'-triphosphate with an IC50 of 9 +/- 6 nM. The use of a fluorescent substrate combined with CE separation has enabled development of a rapid and robust method for detection of AC activity that is an attractive alternative to the AC assay using radioactive nucleotide and column chromatography. In addition, the assay has potential for high-throughput screening of drugs that act at AC.  相似文献   

4.
A general method for noncompetitive immunoassay of small analytes using affinity probe capillary electrophoresis (APCE) is demonstrated using digoxin as a model analyte. A uniform immunoreagent was prepared from a single-chain antibody (scFv) gene specific for digoxin. Site-directed mutagenesis introduced a unique cysteine residue for uniform labeling with a thiol-reactive fluorochrome. After expression in E. coli, the scFv was purified by immobilized metal affinity chromatography (IMAC) using an added C-terminal 6-histidine sequence. The protein was renatured and labeled while immobilized on the IMAC resin. After 0.02-microm filtration to remove microaggregates, the resulting reagent was highly uniform and stable at -12 degrees C for at least 1 year. Three formats of APCE using the scFv reagent were explored. A "mix-and-inject" assay optimized for low detection limits demonstrated analysis of 10 pM digoxin in aqueous standard solutions in 10 min. A rapid mix-and-inject format in a short capillary allowed detection of 1 nM digoxin in 1 min. Digoxin samples in serum and urine were injected directly after 10-fold dilution. In combination with solid-phase extraction, 400 fM digoxin was detected in 1 mL of serum. Including solid-phase extraction, reproducibility was within 2.5%, and the linear range was 3 orders of magnitude. The strategy adopted in this paper should be of general use in the low-level analysis of small analytes.  相似文献   

5.
A capillary electrophoresis (CE) laser-induced fluorescence (LIF) assay was developed for the detection of G protein coupled receptor mediated adenylyl cyclase (AC) activity using BODIPY FL ATP (BATP) as substrate. In the assay, cell membranes coexpressing the stimulatory G protein fused to the beta2 adrenergic receptor (beta2AR) and AC were incubated with BATP, the resultant mixture injected, and BATP separated from product BODIPY FL cAMP (BcAMP) by CE. AC activity was quantified by measuring the rate of BcAMP formation. beta2AR agonists isoproterenol and terbutaline increased basal AC activity with EC50s of 2.4 +/- 0.2 and 60 +/- 9 nM, respectively. The antagonist propranolol competed with terbutaline for beta2AR binding sites and expectedly right-shifted the terbutaline dose-response curve to 8 +/- 3 microM. The high sensitivity of the assay was demonstrated by detection of small changes in AC activity, with the partial agonist alprenolol increasing (22 +/- 1%) and the inverse agonist ICI 118,551 decreasing (19 +/- 2%) basal activity. The simplicity and automation of the CE-LIF assay offers advantages over the more traditional assay using radiochemical ATP and column chromatography.  相似文献   

6.
The ability to detect sub-nanomolar concentrations of ricin using fluorescently tagged RNA aptamers is demonstrated. Aptamers rival the specificity of antibodies and have the power to simplify immunoassays using capillary electrophoresis. Under nonequilibrium conditions, a dissociation constant, Kd, of 134 nM has been monitored between the RNA aptamer and ricin A-chain. With use of this free-solution assay, the detection of 500 pM (approximately 14 ng/mL) or 7.1 amol of ricin is demonstrated. The presence of interfering proteins such as bovine serum albumin and casein do not inhibit this interaction at sub-nanomolar concentrations. When spiked with RNAse A, ricin can still be detected down to 1 nM concentrations despite severe aptamer degradation. This approach offers a promising method for the rapid, selective, and sensitive detection of biowarfare agents.  相似文献   

7.
We describe a capillary electrophoresis (CE) assay to detect G protein-coupled receptor (GPCR)-stimulated G protein GTPase activity in cell membranes expressing alpha2A adrenoreceptor-Galphao1 wild-type (wt) or C351I mutant fusion proteins using a fluorescent, hydrolyzable GTP analogue. As no change in total fluorescence is observed by conversion of substrate to product, CE is used to separate the fluorescent substrate (*GTP) from the fluorescent product (*GDP). Using the assay, the alpha2a adrenoceptor agonist UK14,304 was shown to simulate specific production of *GDP in membranes from HEK293T cells expressing receptor-G protein fusion to 525% of basal levels with an EC50 of 0.48 +/- 0.20 microM. The EC50 increased to 9.4 +/- 5 muM with addition of the antagonist yohimbine. Nucleotide hydrolysis was increased further over agonist-stimulated levels with addition of the in vivo modulator protein RGS (regulator of G protein signaling). It is envisioned that this technique could be used for screening for novel GPCR ligands or other G protein signaling modifiers.  相似文献   

8.
Huang CC  Cao Z  Chang HT  Tan W 《Analytical chemistry》2004,76(23):6973-6981
Protein-DNA/protein-protein interactions play critical roles in many biological processes. We report here the investigation of protein-protein interactions using molecular aptamers with affinity capillary electrophoresis (ACE). A human alpha-thrombin binding aptamer was labeled with 6-carboxyfluorescein and exploited as a selective fluorescent probe for studying thrombin-protein interactions using capillary electrophoresis with laser-induced fluorescence. A 15-mer binding DNA aptamer can be separated into two peaks in CE that correspond to the linear aptamer (L-Apt) and the thrombin-binding G-quadruplex structure in the presence of K(+) or Ba(2+). In a bare capillary, the peak area of G-quadruplex aptamer (G-Apt) was found to decrease with the addition of thrombin while that of L-Apt remained unchanged. Even though the peak of the G-Apt/thrombin binding complex is broad due to a weaker binding affinity between aptamer and thrombin, we were still able to quantify the thrombin and anti-thrombin proteins (human anti-thrombin III, AT III) based on the peak areas of free G-Apt. The detection limits of thrombin and AT III were 9.8 and 2.1 nM, respectively. The aptamer-based competitive ACE assay has also been applied to quantify thrombin-anti-thrombin III interaction and to monitor this reaction in real time. The addition of poly(ethylene glycol) to the sample matrix stabilized the complex of the G-Aptthrombin. This assay can be used to study the interactions between thrombin and proteins that do not disrupt G-Apt binding property at Exosit I site of the thrombin. Our aptamer-based ACE assay can be an effective approach for studying protein-protein interactions and for analyzing binding site and binding constant information in protein-protein and protein-DNA interaction studies.  相似文献   

9.
10.
We report an online, optical injection interface for capillary zone electrophoresis (CZE) based upon photophysical activation of a caged, fluorogenic label covalently attached to the target analyte. This injection interface allows online analysis of biomolecular systems with high temporal resolution and high sensitivity. Samples are injected onto the separation capillary by photolysis of a caged-fluorescein label using the 351-364 nm irradiation of an Ar+ laser. Following injection, the sample is separated and detected via laser-induced fluorescence detection at 488 nm. Detection limits for online analysis of arginine, glutamic acid, and aspartic acid were less than 1 nM with separation times less than 5 s and separation efficiencies exceeding 1,000,000 plates/m. Rapid injection of proteins was demonstrated with migration times less than 500 ms and 0.5 nM detection limits. Online monitoring was performed with response times less than 20 s, suggesting the feasibility of this approach for online, in vivo analysis for a range of biologically relevant analytes.  相似文献   

11.
Glycan characterization of therapeutic proteins is of utmost importance due to the role of carbohydrates in protein stability, half-life, efficacy and mechanism of action. The primary assay for characterization and lot release of N-linked glycans on glycoprotein products at Genentech, Inc., is a capillary electrophoresis (CE) based assay, wherein PNGase F-released, APTS-labeled glycans are separated by CE with laser induced fluorescence (LIF) detection. With the growing number of new molecular entities in the pipeline, a fast and direct characterization approach is of increasing importance. This paper describes the development of CE-MS technology with on-line LIF detection that allows identification of major and minor glycan species (1-5% of total glycans) by providing accurate mass information. Data is presented for therapeutic rMAbs which presented previously unidentified, minor peaks during routine CE-LIF analysis. CE-LIF-MS was then used to provide accurate mass on these species, identifying CE peaks corresponding to sialylated (G1 + NANA, G2 + NANA), afucosylated (G0-GlcNAc-fucose) and low-level isomers of major APTS-labeled glycans G0, G1, G1' and G2.  相似文献   

12.
In two-dimensional capillary electrophoresis, a sample undergoes separation in the first dimension capillary by sieving electrophoresis. Fractions are periodically transferred across an interface into a second dimension capillary, where components are further resolved by micellar electrokinetic capillary electrophoresis. Previous instruments employed one pair of capillaries to analyze a single sample. We now report a multiplexed system that allows separation of five samples in parallel. Samples are injected into five first-dimension capillaries, fractions are transferred across an interface to 5 second-dimension capillaries, and analyte is detected by laser-induced fluorescence in a five-capillary sheath-flow cuvette. The instrument produces detection limits of 940 +/- 350 yoctomoles for 3-(2-furoyl)quinoline-2-carboxaldehyde labeled trypsin inhibitor in one-dimensional separation; detection limits degrade by a factor of 3.8 for two-dimensional separations. Two-dimensional capillary electrophoresis expression fingerprints were obtained from homogenates prepared from a lung cancer (A549) cell line, on the basis of capillary sieving electrophoresis (CSE) and micellar electrophoresis capillary chromatography (MECC). An average of 131 spots is resolved with signal-to-noise greater than 10. A Gaussian surface was fit to a set of 20 spots in each electropherogram. The mean spot width, expressed as standard deviation of the Gaussian function, was 2.3 +/- 0.7 transfers in the CSE dimension and 0.46 +/- 0.25 s in the MECC dimension. The standard deviation in spot position was 1.8 +/- 1.2 transfers in the CSE dimension and 0.88 +/- 0.55 s in the MECC dimension. Spot capacity was 300.  相似文献   

13.
Separation conditions in capillary electrophoresis with native fluorescence detection often represent a compromise in terms of the separation and detection figures of merit. As both the separation and fluorescence properties greatly depend on pH, the ability to independently optimize pH in the separation capillary and the detection region can improve many complex separations. When using a sheath flow cell, the pH at the detection zone can be adjusted independently of the electrophoresis buffer pH. Using capillary electrophoresis with 257-nm excitation and native fluorescence detection, more than an order of magnitude improvement in the limits of detection for dopamine (from 1400 to 120 nM) and epinephrine (from 850 to 60 nM) is achieved by maintaining the basic separation conditions and an acidified sheath buffer. The detection of dopamine in an individual Aplysia californica cerebral ganglion neuron is demonstrated.  相似文献   

14.
Ren J  Huang X 《Analytical chemistry》2001,73(11):2663-2668
Highly sensitive and universal indirect chemiluminescence detection for capillary electrophoresis of cations was described. This novel method is based on use of the ultrasensitive cobalt(II) as a probe ion in the running buffer. A strong and stable background chemiluminescent signal can be generated by the luminol-hydrogen peroxide reaction catalyzed by cobalt(II) ion. Displacement of the cobalt(II) probe ion in the running buffer by a migrating sample cation results in a quantifiable decrease in the background signal. The conditions for electrophoresis and the chemiluminescent reaction were systematically investigated using a commercial capillary electrophoresis instrument with an in-house-built chemiluminescence detector. Under the optimal conditions, the detection limits of the concentration for manganese(II), cadmium(II), nickel(II), lead(II), and 14 lanthanides were (3.0-6.0) x 10(-9) mol/L (S/N = 3), which was approximately 3 orders of magnitude better than indirect UV detection and 2 orders better than indirect laser-induced fluorescent detection. A mixture of 18 metal ions including 14 lanthanides was efficiently separated within 3.5 min using lactate to partially complex the metal ions. Our data demonstrated that CE with indirect CL detection was a powerful and universal tool for analysis of inorganic and organic cations.  相似文献   

15.
The human equilibrative nucleoside transporter 1 protein (hENT1) is a major mediator of cellular entry of nucleosides and anticancer nucleoside drugs; its assay is important in understanding and diagnosing chemotherapy resistance. Here we present a novel assay for quantifying hENT1 using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). A cellular population is treated with 5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine-x8-fluorescein (5-SAENTA-x8f), which binds with high affinity and specificity to the hENT1 protein. The cells are washed to remove excess reagent, lysed, and centrifuged, and the supernatant is analyzed by CE-LIF with the use of an internal standard. Accuracy was evaluated by comparing the capillary electrophoresis results with those obtained by flow cytometry; the results were highly correlated, r = 0.96. The relative standard deviation of the hENT1 assay was 10%, determined from nine independent assays of the same cell line, which is 3 times superior to results obtained in a flow cytometry assay. The detection limit for 5-SAENTA-x8f was 4300 molecules injected into the capillary.  相似文献   

16.
MicroRNAs (miRNAs) are a class of approximately 22-nucleotide noncoding RNA molecules that negatively regulate their target genes in a sequence-specific manner. In the present study, a fluorescence-labeled antisense DNA oligonucleotide was directly hybridized with BART7 miRNA in SSC buffered-cetyltrimethylammonium bromide (CTAB), followed by capillary electrophoresis with laser-induced fluorescence. The CTAB-mediated hybridization allows the probe to anneal the target at 50.0 degrees C, which is well below the computer-calculated melting temperature of 66.4 degrees C. The free probe (22-nt) and probe/miRNA duplex (22-bp) can be separated well by 2% poly(ethylene) oxide in the presence of electroosmotic flow with 7 M urea. The repeatability of the migration time of the DNA probe was 10.66 +/- 0.34 min (n = 10), the resolution was 1.12 +/- 0.11 (n = 10), and the separation efficiencies achieved were 1.71 and 1.74 million per meter. The peak area of the probe/miRNA duplex exhibited an excellent linearity (r(2) = 0.9973). Furthermore, no false positive result was detected even in the presence of a 2000-fold excess of single nucleotide-mismatched target. Compared to other methods, capillary electrophoresis not only exhibits excellent specificity but also shows negligible effects of intrinsic interferences such as human total RNA, primary miRNA or precursor miRNA.  相似文献   

17.
High-speed capillary electrophoresis (CE) was employed to detect binding and inhibition of SH2 domain proteins using fluorescently labeled phosphopeptides as affinity probes. Single SH2 protein-phosphopeptide complexes were detected and confirmed by competition and fluorescence anisotropy. The assay was then extended to a multiplexed system involving separation of three SH2 domain proteins: Src, SH2-Bbeta, and Fyn. The selectivity of the separation was improved by altering the charge of the peptide binding partners used, thus demonstrating a convenient way to control resolution for the multiplexed assay. The separation was completed within 6 s, allowing rapidly dissociating complexes to be detected. Two low molecular weight inhibitors were tested for inhibition selectivity and efficacy. One inhibitor interrupted binding interaction of all three proteins, while the other selectively inhibited Src only leaving SH2-Bbeta and Fyn complex barely affected. IC(50) of both selective and nonselective inhibitors were determined and compared for different proteins. The IC(50) of the nonselective inhibitor was 49 +/- 9, 323 +/- 42, and 228 +/- 19 microM (n = 3) for Src, SH2-Bbeta, and Fyn, respectively, indicating different efficacy of the nonselective inhibitor for different SH2 domain protein. It is concluded that high-speed CE has the potential for multiplexed screening of drugs that disrupt protein-protein interactions.  相似文献   

18.
The capsid of human rhinovirus serotype 2, consisting of four viral proteins, was fluorescence-labeled with fluorescein isothiocyanate and analyzed by capillary electrophoresis using UV and laser-induced fluorescence detection. Heat denaturation, proteolytic digestion, and receptor binding were applied for confirmation of the identity of the peak with the labeled virus. Incomplete derivatization with the fluorophore preserved the affinity of the virus for its receptor, indicating that its cell entry pathway is unperturbed by this chemical modification; indeed, an infectivity assay confirms that the labeled virus samples are infectious. The results show that fluorescence labeling of the viral capsid might lead to a valuable probe for studying infection processes in the living cell.  相似文献   

19.
Chen DC  Chang SS  Chen CH 《Analytical chemistry》1999,71(15):3200-3205
The assembly and characterization of dual-electrode amperometric detection for capillary electrophoresis are described. The detector consists of a disk electrode and an integrated on-capillary electrode fabricated by depositing a gold film onto the end of the separation capillary. The two electrodes are brought together, aligned, and fixed in position using a pair of acrylic plates with a straight groove on one of the plates, the same design as that of a conventional end-column detector. A portion of the on-capillary electrode is parallel-opposed to the disk electrode in a thin-layer geometry. In this region, the redox cycling established between these two electrodes significantly enhances the amperometric signals of electrochemically reversible analytes. For measurements of dopamine in pH 6.9 phosphate electrolyte with a 12.5-μm-i.d. capillary, such a configuration is 10-fold more sensitive than conventional end-column detection. The linear range exceeds 4 orders of magnitude (1.2 mM-50 nM) and the detection limit is 12 nM (4.2 amol, S/N = 3). Various modes of potential settings for the dual-electrode detection are also discussed.  相似文献   

20.
The development of a new assay for lipoproteins by capillary electrophoresis in fused-silica capillaries and in glass microdevices is described in this paper. The separation of low-density (LDL) and high-density (HDL) lipoproteins by capillary zone electrophoresis is demonstrated in fused-silica capillaries with both UV absorption and laser-induced fluorescence detection. This separation was accomplished using Tricine buffer (pH 9.0) with methylglucamine added as a dynamic coating. With UV detection, LDL eluted as a relatively sharp peak with a migration time of approximately 11 min and HDL eluted as a broad peak with a migration time of 12.5 min. Fluorescence detection of lipoproteins stained with NBD-ceramide was used with the same buffer system to give comparable results. Furthermore, fluorescence staining of human serum samples yielded results similar to the fluorescently stained LDL and HDL fractions, showing that this method can be used to quantify lipoproteins in serum samples. The method was also used to detect lipoproteins in glass micro-CE devices. Very similar results were obtained in microdevices although with much faster analysis times, LDL eluted as a sharp peak at approximately 25 s and HDL as a broad peak at slightly longer time. In addition, higher resolution was obtained on chips. To our knowledge, these results show the first separation and detection of lipoproteins in a microfluidic device using native serum samples. Atomic force microscopy was used to characterize the rms surface roughness (Rq) of microfluidic channels directly. Devices with different surface roughness values were fabricated using two different etchants for Pyrex wafers with a polysilicon masking layer. Using 49% HF, the measured roughness is Rq = 10.9 +/- 1.6 nm and with buffered HF (NH4F + HF) the roughness is Rq = 2.4 +/- 0.7 nm. At this level of surface roughness, there is no observable effect on the performance of the devices for this lipoprotein separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号