首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
考虑到由蓄电池和超级电容组成的混合储能系统有利于稳定微电网直流母线电压和优化充放电过程,提出了一种基于直流母线电压稳定的混合储能系统充放电控制策略。该控制策略以直流母线电压稳定为控制目标,实现混合储能系统外部功率平衡,结合超级电容的快充能力和蓄电池的续充能力,以超级电容电压和蓄电池的荷电状态为判断条件,实现混合储能系统内部功率平衡。在Matlab/Simulink环境构建孤岛模式下微电网混合储能系统模型,分析了微电网混合储能系统在负荷功率波动时的运行特性,仿真结果验证了该控制策略在稳定直流母线电压同时降低了蓄电池的充放电次数。  相似文献   

2.
基于电压下垂法的直流微电网混合储能系统控制策略   总被引:2,自引:0,他引:2  
以稳定直流母线电压和优化蓄电池工作过程为目的,提出了一种基于电压下垂法的直流微电网混合储能控制策略。该控制策略根据直流母线电压信息,利用超级电容快速补偿母线功率缺额的高频部分;通过蓄电池对超级电容进行能量补充,间接补偿母线功率缺额的低频部分;利用超级电容电压不能突变的特点,实现对蓄电池电流的平滑控制。控制系统以直流母线电压、超级电容电压及蓄电池荷电状态为判断条件,自动切换工作模式。实验表明,该控制策略可自动调节蓄电池和超级电容出力,维持直流母线电压在额定值附近小范围波动,有效地减小了蓄电池充放电次数,延长其使用寿命。  相似文献   

3.
超级电容-蓄电池混合储能系统同时具有能量密度高和功率密度高的特点,适用于平抑含有大量分布式能源接入的低压直流配电网的电压波动。提出了一种基于混合储能的母线电压分区控制策略,对母线电压实施5层电压控制,蓄电池用于稳定波动较小时的母线电压,超级电容平抑母线电压波动较大时的功率差额,给出了一种根据母线电压波动的极端情况配置超级电容容量的方案。经Matlab/Simulink仿真,验证了该控制策略的可行性。  相似文献   

4.
为了解决光伏发电和负载的随机性、间接性造成的直流母线电压波动和系统稳定运行的问题,依据光储直流微电网系统内各变换器的控制策略将系统内运行分为六种工作模式使各变换器协调运行,通过直流母线电压值和储 能模块的SOC (StateofCharge)实现各变换器工作模式的平滑切换,保证系统的稳定运行;利用超级电容和蓄电池组成混合储能模块,用超级电容电流环补偿蓄电池电流环误差,提高系统的动态响应速度.仿真验证了该控制策略的有效性.  相似文献   

5.
在含新能源的直流微电网系统中,储能系统要同时具备高功率密度和高能量密度的特点,单种储能元件往往难以满足要求,蓄电池与超级电容在性能上具有很强的互补性。将蓄电池与超级电容相连接构成混合储能模块,蓄电池稳定直流母线电压以维持母线上能量供需平衡,超级电容迅速提供或吸收负载波动功率高频分量,以抑制负载或新能源功率突变对直流母线造成的冲击。提出了含分布式发电单元的微电网系统并网运行时各储能单元和直流母线电压的控制策略。实验表明,该控制策略可控制蓄电池和超级电容出力,维持直流母线电压在额定值附近小范围波动,改善系统输出电能质量,提高系统的可靠性和稳定性。  相似文献   

6.
为提高直流配电网的电能质量,提出了一种基于蓄电池-超级电容混合储能的母线电压分区控制策略,对母线电压进行6层分区治理,并网点采用定电压控制策略,蓄电池用于平抑母线电压波动较小时的功率缺额,超级电容用于协助平抑母线电压急剧变化时的功率缺额。最后,通过Matlab/Simulink仿真验证了在所有区间中所提控制策略都能够有效切换,维持母线电压稳定。  相似文献   

7.
微网孤岛运行下储能控制策略的分析与仿真   总被引:3,自引:0,他引:3  
为维持微网孤岛系统的稳定运行并防止系统频繁的充放电对传统蓄电池储能产生较大的负面影响,文中介绍了一种由超级电容和蓄电池组成的混合储能系统能量管理方法.在负荷变化时,由超级电容迅速响应功率需求,同时控制直流侧母线电压;在直流侧母线电压稳定后,超级电容不再输出功率,由蓄电池补偿系统净负荷的功率缺额.该方法有效防止了微网孤岛系统的净负荷需求突然变化对蓄电池造成的冲击,优化了蓄电池的工作过程,延长了蓄电池的使用寿命.最后利用PSCAD仿真验证了本文所提方法的有效性.  相似文献   

8.
针对海岛直流微网中发电微源输出功率不稳定造成的母线电压大幅度波动问题,基于300 kW海洋能集成供电系统的功率输出特点,采用由蓄电池和超级电容组成的复合储能系统,对其3种拓扑结构进行了对比分析,优选了对该供电系统而言最佳的拓扑结构,并提出了一种新型复合储能协调控制策略。该控制策略依据母线电压的3个阈值将系统划分成5个工作区域,储能系统依据直流母线电压值实现充放电工作模式的自动识别和切换;以蓄电池为主要出力单元,避免超级电容的频繁投切,减少不必要开关动作造成的系统谐波。利用搭建的实验平台验证了所述控制策略的有效性和可靠性。  相似文献   

9.
在分布式发电系统中,储能系统要同时具备高功率密度和高能量密度的特点,单种储能元件往往难以达到这个要求,蓄电池与超级电容在性能上具有很强的互补性。此处将蓄电池与超级电容分别通过双向半桥变换器连接到直流母线上构成混合储能系统(HESS),蓄电池稳定直流母线电压以维持母线上能量供需平衡,超级电容迅速提供负载波动功率高频分量,抑制负载突变对直流母线造成的冲击。分析了负载功率高频分量的检测方法,建立了双向半桥变换器的数学模型和4种模式下的控制策略。利用DSP实现储能系统的综合控制,通过仿真和实验验证了系统控制策略的有效性。  相似文献   

10.
蓄电池与超级电容混合储能系统的控制策略   总被引:2,自引:0,他引:2  
在分布式发电系统中,储能系统要同时具备高功率密度和高能量密度的特点,单种储能元件往往难以达到这个要求,蓄电池与超级电容在性能上具有很强的互补性。本文将蓄电池与超级电容分别通过双向半桥变换器连接到直流母线上构成混合储能系统,蓄电池稳定直流母线电压以维持母线上能量供需平衡,超级电容迅速提供负载波动功率高频分量,抑制负载突变对直流母线造成的冲击。分析了负载功率高频分量的检测方法,建立了双向半桥变换器的数学模型和四种模式下的控制策略。利用DSP实现储能系统的综合控制,通过仿真和实验验证了系统控制策略的有效性。  相似文献   

11.
为了更好地控制、管理和使用随机性较大的分布式可再生能源和需求波动较大的负载,文章对光储直流微电网系统内不同的变换器提出不同控制策略,通过不同控制策略控制变换器协调运行来保证系统的稳定运行,同时利用基于超级电容和蓄电池的互补特性设计了级联的拓扑结构组成混合储能系统,使系统稳定性进一步提高;并将系统分为多个运行模式,在所提控制策略下系统在多个模式间实现平滑稳定切换。最后对运行中出现的分布式光伏电源输出波动和负载变化情况在MATLAB/Simulink进行了仿真实验。结果表明,所提策略能有效抑制系统直流母线电压波动和优化混合储能的运行,提高了系统的可靠性和稳定性,验证了控制策略的有效性和可行性。  相似文献   

12.
直流微网中分布式电源出力的随机波动性,不仅会引起直流母线电压大范围波动,还会影响系统的稳定运行。对此,提出了一种光储直流微网能量协调控制方法,实现了因系统功率供需不平衡引起的母线电压波动的快速平抑。该方法优先利用新能源为负荷供电,通过设定并网变换器和储能模块的工作阈值以协调管理各模块间的能量流动,避免直流母线电压小范围波动引起电力电子器件频繁动作,实现能量的最优利用。在并网状态下,直流微网通过并网变换器与大电网进行能量交换;在离网状态下,光伏模块与混合储能模块协调配合给本地负载供电。其中,考虑混合储能模块的充放电裕量,结合超级电容功率密度大和锂电池能量密度高的特点,混合储能模块让超级电容先工作来平衡系统瞬时功率,提高系统的动态响应特性,减少锂电池动作次数,延长使用寿命。锂电池工作后,可以配合超级电容调整直流母线电压,防止超级电容达到饱和的速度过快。仿真验证了所提方法的有效性。  相似文献   

13.
针对直流微电网中光伏发电单元出力的波动性和间歇性造成系统内部功率不平衡的问题,混合储能系统可以同时发挥蓄电池高能量密度和超级电容高功率密度的优势,根据直流母线电压进行混合储能单元间的协调控制策略。该策略将直流母线电压进行分层控制,采用四个电压阈值共分成五个控制区域,以直流母线电压为信息载体,决定储能系统的运行状态,实现对混合储能单元的充电、放电模式间自主切换。电压分层控制有效地避免了蓄电池由于电压波动而频繁进行充放电切换,从而延长了电池的使用寿命。最后,MATLAB/Simulink的仿真结果验证了所提控制策略的可行性。  相似文献   

14.
针对多源储结构的独立直流微电网,提出考虑多储能系统功率分配的独立直流微电网协调控制策略,以实现源储能源利用率最大化与多储能系统间功率合理分配两方面的平衡控制,提升微网持续供电能力.根据直流母线电压信号将微网系统运行划分为5种工作模式,以协调源储运行,保证光伏能源利用率最大化及储能系统出力充足.同时,直流微电网工作模式切...  相似文献   

15.
近年来,由于具有绿色环保,取之不尽等特点,可再生能源发电系统成为全球研究热点之一。但是其存在着诸如低电压穿越等条件的限制,影响了新能源并网发电。文章以光伏电站为背景,首先提出利用混合储能系统协助光伏电站单台逆变器抵御低电压穿越的控制策略,采用滑动平均函数,提取低电压穿越时波动功率的直流分量,利用铅酸蓄电池和超级电容不同特性,使蓄电池吸收波动功率中直流缓变分量,保证能量平衡,超级电容处理交流突变分量,维持直流母线电压稳定。该控制策略既满足了光伏并网逆变器低电压穿越的要求,又保证了储能元器件的寿命。然后利用计算机网络通讯技术,通过合理配置不同并网逆变器蓄电池的SOC状态,保证光伏电站内部不同逆变器的蓄电池能量维持在合理范围,能够及时吸收或者释放能量。最后给出了逆变器控制策略的仿真和实验结果,同时也使用C#编写了蓄电池SOC管理软件,进行了测试,仿真和实验结果都验证了文中提出的控制策略的可行性。  相似文献   

16.
基于DIgSILENT平台的储能建模   总被引:1,自引:0,他引:1  
电力储能设备在新能源发电领域正受越来越大的关注,在商业软件中建立其动态模型十分重要。针对蓄电池和超级电容在直流侧耦合这种通用混合储能结构,推导了蓄电池和超级电容的数学模型,并在商业软件DIgSILENT中实现其动态模型的自定义。所建立的混合储能模型通用性较强,不仅能适应混合储能的模拟,也能模拟单独的蓄电池或者超级电容。结合典型算例对建立的模型进行仿真,验证了模型的通用性和控制策略的有效性。  相似文献   

17.
为了合理使用不同类型的松弛终端调节直流微电网母线电压波动,提出了一种针对直流微电网中混合松弛终端的分层控制策略。基于锂电池存在最佳充放电循环深度、超级电容动态响应快和上级直流主母线功率大等特性,文中将超级电容作为缓冲单元,采用双锂电池为主要的能量单元(A、B),并用上级主母线作为后背支撑,构成完备的混合型松弛终端架构。通过分析,超级电容电压控制电池出力,在微电网系统处于动态平衡时,超级电容电压可以间接表征出直流母线电压波动的低频分量。因此文中利用超级电容电压来确定双锂电池出力,根据超级电容电压信号进行层级划分并设计四种工作模式,使各松弛终端得到能量的高效分配。实验结果验证了该控制策略的有效性。  相似文献   

18.
锂电池作为光储微网的储能电池,能够提高光伏发电系统的稳定性,改善电能质量,但成本高昂。将电动汽车的退役动力锂电池用于光储微网的储能单元,不仅可以降低投资成本,还可以缓解大批量电池进入回收阶段的压力。首先基于锂电池的工作原理,构建了退役动力锂电池的等效电路模型。接着建立了储能变流器和多重双向DC/DC变换器级联拓扑,储能变流器采用电压外环、电流内环的双闭环策略,稳定直流母线的电压;多重双向DC/DC变换器采用以电池组的荷电状态(SOC)为约束条件的双闭环控制策略,平抑光伏发电系统的功率波动。最后搭建了基于退役锂电池储能的光储微网系统,验证了控制策略的有效性。  相似文献   

19.
针对光储微网中混合储能功率分配不佳导致母线电压频繁波动的问题,提出一种小波包与模糊控制相结合的混合储能功率分配策略。首先利用小波包对光伏系统净功率进行一次分解,得到初次分频点,其次将混合储能荷电状态和电池温度作为模糊控制的参考因素制定模糊规则,对二阶低通滤波器时间常数进行可变调节,修正初次分频点,实现混合储能的最终功率分配。为验证策略的有效性,建模并进行仿真,结果表明所提策略能够有效避免储能电池过充过放,实现光储系统净功率的合理分配,有效平抑功率波动,使直流母线电压波动在±1%以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号