首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
目的 研究不同钎焊温度下获得TZM/Ti-61Ni/TZM接头的微观组织演化及力学性能的变化,为获得可靠钎焊接头提供指导.方法 采用电弧熔炼方法制备Ti-61Ni,将以TZM/Ti-61Ni/TZM"三明治"结构装配的试样放入真空炉中进行不同温度(1200~1280℃)下的钎焊连接,利用SEM和EDS等手段分析钎料与母材之间的相互作用,测试接头的力学性能并分析接头断裂行为,研究温度对接头界面组织演化和力学性能的影响.结果 钎缝主要为TiNi相和TiNi3相,钎料中Ti元素向母材扩散形成Mo(s,s)扩散层;钎焊温度升高,钎缝宽度减小,TiNi相减少,钎料对TZM母材的溶蚀加剧;接头的抗剪强度先升高后下降,接头在TZM母材处断裂.结论 采用Ti-61Ni高温钎料实现了TZM合金的可靠连接,接头典型界面组织为TZM/扩散层(Mo(s,s))/TiNi+TiNi3/扩散层(Mo(s,s))/TZM;当钎焊温度为1240℃时,接头的抗剪强度达到最大值,为121 MPa.  相似文献   

2.
采用不同铒含量的7组Al-20Cu-9.6Si-xEr钎料分别对SiCp/A356复合材料进行了真空钎焊。利用扫描电镜和能谱分析等方法对接头微观组织进行了观察和分析。通过剪切实验对钎焊接头的抗剪强度进行了测定,并对剪切断口的微观形貌进行了观察。结果表明:添加稀土后,钎焊接头的抗剪强度明显提高。当w(Er)=0%时,钎缝处SiC颗粒聚集严重,接头强度为43.5MPa;当w(Er)=0.05%时,钎缝边界无SiC颗粒的聚集,接头强度最高,达到68.6MPa;当w(Er)=0.1%-0.4%时,钎缝处SiC颗粒聚集趋势减弱,接头强度值在45.3-50.5MPa之间;当w(Er)=0.5%时,SiC颗粒分布在钎缝内部,接头强度明显提高,达到62.2MPa。  相似文献   

3.
采用Ni基箔片钎料对GH3044镍基合金进行钎焊连接,利用电子扫描显微镜(SEM)及能谱分析仪,对接头的界面组织进行观察和分析;采用电子万能试验机对GH3044镍基合金的钎焊接头进行抗剪试验,评价接头的室温抗剪强度.试验结果表明:当钎焊温度为1070℃,保温时间为10min时,界面处有(Cr,W)2+Ni固溶体析出,钎缝中有(Cu,Ni)固溶体组织+Ni-Mn金属间化合物层及η″+ξ′金属间化合物层生成,此钎焊工艺参数下获得的钎焊接头具有最高的室温抗剪强度319MPa.  相似文献   

4.
对三种板厚的SPCC钢冷轧薄板进行了高速连续压平缝焊试验,对试样进行了连续退火处理,观察了接头的焊接缺陷、显微组织、测试了接头的拉剪强度,分析讨论了影响拉剪强度的主要因素。结果表明,内部喷溅等焊接缺陷将显著降低接头强度。当不含焊接缺陷时,再结晶退火态接头的强度高于母材,断口处于母材,属韧性断裂;而焊态接头的强度低于母材,断口处于焊趾处,属脆性断裂。  相似文献   

5.
采用自制的Al-Si-Cu-Zn钎料对3003铝合金进行钎焊实验,利用X射线衍射、扫描电镜、能谱仪对接头微观组织和断口进行分析,并研究了钎焊温度对接头组织和性能的影响。结果表明:在540~580℃保温10min工艺下钎焊3003铝合金,均可获得良好的钎焊效果。钎焊接头均由钎缝中心区的α(Al)固溶体、θ(Al2Cu)金属间化合物、细小Si相和AlCuFeMn+Si相,两侧扩散区的α(Al)固溶体与元素扩散层以及母材组成;钎焊接头室温剪切断裂于扩散区齿状α(Al)/钎缝中心区的交界面,断口主要呈脆性解理断裂特征。随着钎焊温度的升高,扩散区的α(Al)固溶体晶粒长大,接头结合界面犬牙交错;当钎焊温度为560℃,保温10min时,接头的室温抗剪强度达到最大值92.3MPa,约为母材强度的62.7%。  相似文献   

6.
采取化学成分分析、金相检验、扫描电镜(SEM)断口分析方法对压缩机铜管钎焊接头裂缝缺陷进行研究与分析,并通过在线模拟试验方法验证分析结果。结果表明,铜管钎焊接头裂缝主要原因为接头受到不均匀的二次加热出现收缩不一致,局部加热温度过高且超过钎料熔点使钎料重新熔化,钎料再次凝固时,部分空气残留在焊缝区域伴随钎料一起冷却,最终在钎料内部形成疏松和孔洞,降低钎焊接头强度;钎焊接头母材的热膨胀系数不同,使钎料在冷却过程中形成的内应力过大,最终导致铜管钎焊接头出现裂缝。  相似文献   

7.
SiC颗粒增强铝基复合材料的钎焊性   总被引:1,自引:0,他引:1  
采用氩气保护炉中钎焊和真空钎焊两种试验方法,对SiCp/101Al复合材料的钎焊性进行研究。结果表明,通过选择合理的钎料和钎剂及采用正确的钎焊工艺参数,可以实现对SiCp/101Al复合材料的钎焊连接。对获得接头进行力学性能测试,表明钎焊接头的剪切强度随钎焊温度的升高而升高,当达到一定值以后,又随着钎焊温度的升高而降低。对接头钎缝区的XRD相结构分析中发现,接头中含有Al-Cu、Al-Si共晶组织相,并且有SiC相存在,说明母材中有部分SiC增强相颗粒过渡到了钎缝之中,有利于提高钎缝接头的力学性能。从钎焊接头的断口扫描照片中可以看出,接头大部分都呈韧性断裂特征,且大多数接头都断裂于靠近钎缝的母材部位,说明钎焊接头的质量较高,钎焊工艺可行。  相似文献   

8.
采用Cu-Mn-Ni-Sn钎料对Mn-Cu合金与430不锈钢分别进行普通钎焊(铸态钎料,850℃)和仿SIMA法钎焊(轧制态钎料,半固态温度790℃),研究钎焊温度对接头微观组织、化合物的形成数量以及剪切强度的影响。结果表明:普通钎焊接头中,不锈钢与钎缝的界面处形成(Mn,Fe,Cr)固溶体扩散层,但扩散层与钎缝界面位置形成裂纹。富Sn相沿Mn-Cu合金的晶界渗透促进了合金的熔化,钎缝与Mn-Cu合金之间形成联生结晶。不锈钢向钎料中的过度溶解以及Mn-Cu合金的局部熔化导致钎缝中形成大量针状Mn-Cr-Cu-Fe化合物。仿SIMA法钎焊接头中,不锈钢与钎缝的界面结合良好。在半固态温度下,钎料向不锈钢侧的扩散量减小,同时不锈钢向钎料溶解的程度也较小。在Mn-Cu合金侧,富Sn相沿晶界的渗透得到了有效抑制,钎缝与Mn-Cu合金之间可观察到明显的界面。由于钎料与母材之间的相互作用减弱,钎缝中针状化合物的数量明显减少。剪切试验中,两种钎焊接头均断裂于钎缝中的针状化合物分布区域。普通钎焊接头的剪切强度为173 MPa,仿SIMA法钎焊接头的剪切强度有所提高,为230 MPa。  相似文献   

9.
在不同保温时间下,分别采用 Sn-3.0Ag-0.5Cu 和 Sn-3.0Ag-0.5Cu-3.0Bi 无铅软钎料,对表面镀镍的两种不同体积分数的 SiCP/6063Al 复合材料进行真空软钎焊。通过剪切强度测试、显微组织分析、能谱分析等手段研究了钎焊接头的组织和性能。结果表明:Bi 元素的加入改善了 Sn-3.0Ag-0.5Cu 钎料的铺展润湿性,降低了熔点,提高了焊缝的抗剪强度;在270℃保温35 min 时,Sn-3.0Ag-0.5Cu-3.0Bi 钎料钎焊接头抗剪强度达到最高值38.23 MPa;钎焊过程中只是两侧镀镍层间的焊接,钎料并未透过镍层与母材发生扩散反应。  相似文献   

10.
以B--Ag40CuZnCdNi为钎料,分别采用“三明治法”和“毛细法”对1Cr17铁素体不锈钢板进行火焰钎焊。对接头进行了拉伸试验,并对接头的组织和显微硬度进行了分析。结果表明:在相同条件下,“毛细法”施焊时,液态钎料的填缝过程具有清洁间隙的作用,有利于得到缺陷少而结合良好的接头,接头的剪切强度大于“三明治法”。  相似文献   

11.
High-frequency induction brazing of cemented carbide (WC–Co, K20) and alloy steel (AISI 4140) using Cu–Zn base filler metal was carried out. The relationship between microstructure and performance of the welding joint was investigated. It was found that the filler metal exhibited excellent wettability and metallurgical bond in the welding surface. As the heating rate reduced, welding joint appeared smooth without any visible crack. In the diffusion layer, some intermetallic compounds were observed, which were produced by the reaction of diffusion atoms. The microhardness in the middle of the welding seam was 168 Hv and it increased gradually when approaching to the edge of welding seam. With brazing temperature increased or heating rate decreased, the shear strength of welding joint increased first and then decreased. The machining test clearly revealed that the cutting temperature and the flank wear increased with the cutting speed rose. The welding joint had good shear strength when the temperature was below 500°C and the shear strength decreased seriously when the temperature exceeded 500°C.  相似文献   

12.
高温合金构件真空钎焊通常采用Ni-Cr-Si-B系钎料 ,在钎缝中会形成连续分布的共晶组织 ,使钎缝重熔温度降低 ,耐热性变差 .为解决这一难题 ,研究了一种粉末冶金 -钎焊工艺 ,结果表明 :该工艺可以消除钎缝中低熔点共晶组织 ,并能实现钎缝固溶强化和第二相强化 ,从而提高了钎缝的耐热性 .用K40 3和GH40 3 7合金钎焊接头持久性能分别达到母材的 75 %和 95 %的水平 ,该工艺已用于涡轮导向叶片的修补 .  相似文献   

13.
采用快速甩带技术制备了(Al-10Si-20Cu-0.05Ce)-1Ti(质量分数/%)急冷箔状钎料,并对60%体积分数的SiCp/6063Al复合材料进行真空钎焊实验,然后对钎料及接头的显微组织与性能进行测定和分析.结果表明,急冷钎料的微观组织细小、成分均匀,厚80~90μm,主要包含Al、CuAl2、Si和Al2Ti等相.当升高钎焊温度(T/℃)或延长保温时间(t/min),SiCp/钎料界面的润湿性改善,6063Al基体/钎料间互扩散和溶解作用增强,接头连接质量逐渐提高.当T=590℃、t=30 min时,接头抗剪强度达到112.6MPa;当T=590℃、t=50 min时,少量小尺寸SiCp因液态钎料排挤而分散于钎缝,因加工硬化而使接头强度递增7.3%.然而,当T≥595℃、t≥60 min时,SiCp偏聚于钎缝,导致接头组织恶化,且剪切断裂以脆性断裂为主.综合考虑钎焊成本与接头强度使用要求,确定最佳钎焊工艺为590℃、30 min.  相似文献   

14.
钛合金在经济性和加工性方面不理想,导致其在实际工程应用中受限,而铝合金在某种程度上可以弥补这种缺陷,因此将钛合金和铝合金复合使用的构想应运而生。对钛合金和铝合金异种金属的可焊性进行了分析,以钛合金和铝合金钎焊为研究对象,重点论述了钛合金与铝合金钎焊连接所用的钎料及工艺等的国内外研究现状,并着重分析了Al基和Zn基钎料的润湿性、界面、钎缝组织及其优缺点。由相关文献分析可知,Al基钎料在真空、保护气氛或非真空外加辅助措施条件下对钛合金和铝合金都有良好的润湿性,但接头强度仍有待提高,金属间化合物较厚的问题需要通过优化钎料成分和焊接工艺进一步改善;Zn基钎料对钛合金的润湿性较差,但在适当的焊接工艺下可以获得力学性能较好的Ti/Al接头,剪切强度可达141MPa;使用Sn基和Cu基钎料获得的Ti/Al接头的力学性能低于Al基和Zn基钎料,且Sn基的钎料对两种母材的润湿性都较差,需要对母材表面进行预处理。  相似文献   

15.
Rapidly solidified Al–8.5Si–25Cu–xY (wt-%, x?=?0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) foils were used as filler metal to braze Al matrix composites with high SiC particle content (SiCp/Al-MMCs), and the filler presented fine microstructure and good wettability on the composites. The joint shear strength first increased, then decreased and a sound joint with a maximum shear strength of 135.32?MPa was achieved using Al–8.5Si–25Cu–0.3Y as the filler metal. After Y exceeded 0.3%, a needle-like intermetallic compound, Al3Y, was found in the brazing seam, resulting in a dramatic decline in the shear strength of the brazed joints. In this research, the Al–8.5Si–25Cu–0.3Y filler metal foil was found to be suitable for the brazing of SiCp/Al-MMCs with high SiC particle content.  相似文献   

16.
TiC陶瓷/NiCrSiB/铸铁钎焊连接的界面组织和强度分析   总被引:1,自引:0,他引:1  
采用NiCrSiB钎料对TiC陶瓷与铸铁进行钎焊连接,分析了接头的界面组织和剪切强度.结果表明:当连接规范一定时,在钎料内部、钎料与母材的界面处有TiC从TiC陶瓷侧扩散过来,同时在钎料内部和界面处有[Ni,Fe]和Ni基固溶体生成.当连接温度为1373K,连接时间为20 min时,接头的剪切强度最高可达78.6 MPa.  相似文献   

17.
用真空熔炼、惰性气体雾化法制备Ni-Cr-P金属粉末,再加入有机黏结剂高速搅拌,制备Ni14Cr10P膏状活性钎料。用制备好的焊膏真空钎焊C/C复合材料,测试钎焊接头的剪切强度,通过OM,SEM,EDS,XRD等对钎焊接头界面组织结构进行分析。结果表明:在钎焊温度1000℃、保温时间0.5 h条件下,获得的接头剪切强度达到28.6 MPa,然后随着钎焊温度上升或保温时间延长,钎焊接头强度下降;通过界面组织结构分析发现焊膏可以增加钎料层与C/C复合材料表面的接触面积,有利于堵塞C/C复合材料表面的孔隙。焊后在界面处形成了交错分布的Cr碳化物相缓冲层,使得界面呈现热膨胀系数梯度增加的结构,有助于缓解热失配,提高C/C复合材料钎焊接头强度。  相似文献   

18.
Simulation of columnar crystallite formation in brazed seams of copper‐brazed carbon steels When brazing steels of different carbon content with copper filler metal, columnar crystallites form on the carbon‐rich iron surface if the width of the brazing gap is smaller than 100 μm. Braze seams with such microstructures were described as early as the 1950ies and it was found out, that the strength of such a joint is significant enhanced, if this crystallites penetrate the entire seam. Extensive experimental investigations in recent years confirm, that the final average length of the crystallite increases superproportionally with decreasing brazing gap width and is almost inversely proportional to the difference in carbon content of the joined steels. Although many attempts to explain this phenomenon are known from literature, the mechanism of columnar structure formation has not been clarified properly until now. The aim of the present work was to develop an appropriate physical model, that describes the growth of crystallites as a function of carbon content in the base materials, the initial brazing gap width and the applied process parameters (temperature, time). The model is an appropriate tool for a general choice and development of filler metal‐base material combinations forming columnar crystallites in the braze seam.  相似文献   

19.
Brazing of high nitrogen austenitic stainless steels was carried out by using Ni-Cr-B-Si filler metal. The effects of brazing temperature (1020–1100°C) on the microstructure and shear strength of the joints were investigated. The results show that BN compounds with hexagonal structure are formed at the interface by the reaction of N from substrate and B from filler. The brittle Cr5B3 compounds with high microhardness are observed in the centre of brazing seam. The BN content increases and the Cr5B3 content decreases with the increase in brazing temperature. However, the content of BN compounds played a determinable role on the joint strength. The optimal shear strength of joints was 176.7?MPa when the joining temperature was 1020°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号