首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type 347 austenitic stainless steel (18Cr-12Ni-Nb) was alloyed with copper (3 wt pct), boron (0.01 to 0.06 wt pct), and cerium (0.01 wt pct) with an aim to increase the creep rupture strength of the steel through the improved deformation and cavitation resistance. Short-term creep rupture strength was found to increase with the addition of copper in the 347 steel, but the long-term strength was inferior. Extensive creep cavitation deprived the steel of the beneficial effect of creep deformation resistance induced by nano-size copper particles. Boron and cerium additions in the copper-containing steel increased its creep rupture strength and ductility, which were more for higher boron content. Creep deformation, grain boundary sliding, and creep cavity nucleation and growth in the steel were found to be suppressed by microalloying the copper-containing steel with boron and cerium, and the suppression was more for higher boron content. An auger electron spectroscopic study revealed the segregation of boron instead of sulfur on the cavity surface of the boron- and cerium-microalloyed steel. Cerium acted as a scavenger for soluble sulfur in the steels through the precipitation of cerium sulfide (CeS). This inhibited the segregation of sulfur and facilitated the segregation of boron on cavity surface. Boron segregation on the nucleated cavity surface reduced its growth rate. Microalloying the copper-containing 347 steel with boron and cerium thus enabled to use the full extent of creep deformation resistance rendered by copper nano-size particle by increase in creep rupture strength and ductility.  相似文献   

2.
Composition of type 347 austenitic stainless steel was modified with the addition of boron and cerium. An improvement of creep strength coupled with creep ductility of the steel was observed with boron and cerium additions. The observation of enhanced precipitation of carbonitrides in boron-containing steel over that of boron-free steel may in part contribute to the increase in creep strength. Both grain boundary sliding and nucleation and growth of intergranular creep cavities were found to be suppressed in steel-containing boron. This results in an increase in creep strength and creep ductility. Auger electron spectroscopic analysis of the chemistry of creep cavity surfaces (exposed by breaking the creep-exposed steel specimen at liquid nitrogen temperature under impact loading) revealed the segregation of elemental boron on the creep cavity surface. Boron segregation, on the creep cavity surface in the absence of sulfur contamination, suppressed the cavity growth and provided the steel with a self-healing effect for creep cavitation. Cerium additions enabled boron to segregate on the cavity surface by effectively removing the traces of free sulfur in the matrix by the formation of ceriumoxysulfide (Ce2O2S).  相似文献   

3.
The creep and fracture properties of high-purity Ni-20 pct Cr and Ni-20 pct Cr-0.11 pct Zr alloys are compared at 1073 K in vacuum. The Ni-20 pct Cr alloy cavitates at the grain boundaries and fractures intergranularly after strains of typically 20 pct. The observed cavity growth rates are in keeping with those predicted. Alloying with zirconium substantially increases the creep strength and ductility. Creep rupture associated with dynamic recrystallization occurs, and voids are observed only in heavily necked parts of the samples. In addition to Ni5Zr and ZrO2 inclusions, a Zr4C2S2 carbo-sulfide was identified. Thus, the sulfur-gettering effect of zirconium even at very low residual sulfur levels (20 wt ppm) was confirmed. The zirconium-induced increase in the creep strength is discussed, and the inhibition of creep cavitation by zirconium is examined within the framework of thermal cavity nucleation. Lowering of the grain boundary diffusivity and the grain boundary free energy as well as dynamic recrystallization are likely to reduce cavity nucleation and growth rates in Ni-Cr-Zr and will thus increase its ductility. Finally, the results are used to illustrate the critical importance of minor alloying additions in constructing and using fracture mechanism maps.  相似文献   

4.
Samples of austenitic stainless steel DIN 1.4970 containing about 40 ppm of boron and a boron-free version of this steel were creep tested at 700 °C in both the solution-annealed and aged conditions to determine their creep ductility and strength. The microstructure before creep tests was determined using transmission electron microscopy. The distribution of boron in both the steels after solution annealing (SA) and aging was mapped by means of α-autoradiography. It has been observed that in the solution-annealed condition, the creep strength of 1.4970 steel is higher than that of the boron-free version; whereas after aging, the strength of 1.4970 steel is lower than that of the boron-free version. The creep ductilities were hardly influenced by the presence of boron. The results are discussed in terms of microstructure and boron distribution in the matrix. Formerly with the Indira Gandhi Centre for Atomic Research, Kalpakkam, India.  相似文献   

5.
Evaluations of creep rupture properties of dissimilar weld joints of 2.25Cr-1Mo, 9Cr-1Mo, and 9Cr-1MoVNb steels with Alloy 800 at 823 K were carried out. The joints were fabricated by a fusion welding process employing an INCONEL 182 weld electrode. All the joints displayed lower creep rupture strength than their respective ferritic steel base metals, and the strength reduction was greater in the 2.25Cr-1Mo steel joint and less in the 9Cr-1Mo steel joint. Failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of the heat-affected zone (HAZ) of the ferritic steel (type IV cracking) with the decrease in stress. At still lower stresses, the failure in the joints occurred at the ferritic/austenitic weld interface. The stress-life variation of the joints showed two-slope behavior and the slope change coincided with the occurrence of ferritic/austenitic weld interface cracking. Preferential creep cavitation in the soft intercritical HAZ induced type IV failure, whereas creep cavitation at the interfacial particles induced ferritic/austenitic weld interface cracking. Micromechanisms of the type IV failure and the ferritic/austenitic interface cracking in the dissimilar weld joint of the ferritic steels and relative cracking susceptibility of the joints are discussed based on microstructural investigation, mechanical testing, and finite element analysis (FEA) of the stress state across the joint.  相似文献   

6.
Generation IV reactors are being developed to produce a reliable energy safely and with an economic benefit, because nuclear energy is being seriously considered to meet the increasing demand for a world-wide energy supply without environmental effects. Ferritic/martensitic steels are attracting attention as candidate materials for the Gen-IV reactors due to their high strength and thermal conductivity, low thermal expansion, and good resistance to corrosion. In recent years, new ferritic/martensitic steels have been developed for ultra supercritical fossil power plants through advanced technologies for steel fabrication. The microstructural stability of these materials for the pressure vessel, cladding and core structure of the VHTR and SFR is very important. Nitrogen is a precipitation hardening element, and the thermal stability of nitrides is superior to that of carbides. So the formation of nitrides may improve the thermal stability of the microstructure and eventually increase the creep rupture strength of high Cr steels. The effect of nitrogen on the creep rupture strength and microstructure evolution of nitrogen-added Mod.9Cr-1Mo steels has been studied. Creep testing was carried out at 873 and 923 K under constant load conditions. The optimum controlled Cr2X precipitates were developed by special heat treatment, and they were not dissolved after a creep deformation. These fine and stable Cr2X precipitates contributed to the increase of the creep rupture strength. The prior austenite grain size and martensite lath width were decreased by the resultant stable nitrides.  相似文献   

7.
From the viewpoint of energy-saving and environment protection,it is necessary to develop Ultra Super Critical(USC) fossil-fired power plants.In order to ensure the reliable operation of power plants under high steam conditions,good mechanical properties(particularly high creep strength),corrosion resistance and fabricability are generally required for the heat resistant steels used in USC boilers.Among these heat-resistant steels,S30432 austenitic heat-resistant steels are of interest due to high creep strength,excellent oxidation and corrosion resistance at temperatures up to 650 -700℃.In this paper,the strengthening mechanism of S30432 austenitic heat-resistant steel was investigated based on the precipitation behavior of S30432 during aging and creep at 650℃.Results show that the microstructure of as-supplied S30432 steel is austenite,the main precipitation consists of only Nb(C,N).After aged for 10 000 h or crept for 10 712 h,there is a slight increase in the size of fine Nb(C,N),but the transformation from Nb(C,N) to NbCrN does not occur.Aging and creep results in the precipitation ofε-Cu and M23C6.The coarsening velocity ofε-Cu particles diminishes greatly and they are still very fine in the long-term creep range.With the increase of aging and creep time M23C6 carbides tend to coarsen gradually.The size of M23C6 is larger and the coarsening is easier in contrast toε-Cu and Nb(C,N).Nb(C,N) precipitates in the as-supplied microstructure,while aging and creep result in the precipitation ofε-Cu and M23C6.High creep rupture strength of S30432 steel is attributed to the precipitation hardening ofε-Cu,Nb(C,N) and M23C6.Extremely,ε-Cu plays an important role in improving the creep rupture strength of S30432,and at least 61%of the creep rupture strength of S30432 at 650℃results from the precipitation hardening ofε-Cu particles.  相似文献   

8.
The heat-to-heat variation in the creep strength and ductility of austenitic stainless steels was reviewed from the viewpoint of residual and trace element effects. Based on data reported in the literature, the creep strength of unstabilized alloys such as types 304 and 316 stainless steel increased with residual element and trace element content. Niobium appeared to be the most potent strengthener. There was no direct evidence that trace elements such as sulfur and phosphorus had a deleterious effect on either strength and ductility. It was assumed that the creep strength and ductility of the unstabilized grades of austenitic stainless steels are controlled by the precipitate characteristics. It follows from this that thermomechanical treatment or residual element additions that affect the precipitate characteristics influence subsequent time dependent mechanical properties. This view is consistant with most of the information in the literature. It was concluded that more systematic studies of trace and residual element effects would be beneficial to the improvement of steels. Incorporated into the studies should be quantitative characterization of evolving precipitate morphology and composition as they are influenced by residual elements. This information should be incorporated into modeling studies of non-equilibrium segregation. Ultimately, optimum elevated-temperature strength could be developed based on a materials science approach. This paper is based on a presentation made at the symposium “The Role of Trace Elements and Interfaces in Creep Failure” held at the annual meeting of The Metallurgical Society of AIME, Dallas, Texas, February 14-18, 1982, under the sponsorship of The Mechanical Metallurgy Committee of TMS-AIME.  相似文献   

9.
The creep resistance of advanced chromium steels can be significantly increased due to precipitation of very small particles of vanadium nitride VN. The solubility and precipitation of VN, Nb(C,N) and AIN in austenite and ferrite was analysed using relevant solubility products. The calculated values of nitrogen in solid solution were used for assessment of creep rupture strength of chromium steel (mean considered chemical composition, mass contents in %: 0.18 C; 10.5 Cr; 1.0 Mo; 0.2 V; 0.07 Nb; 0.05 N; 0.01 Al). Increasing N mass contents from 0.03 to 0.07 % leads to increasing creep rupture strength in 100 000 h at 600°C of about 60 %. Lowering AI mass contents from 0.045 to 0.005 % produces higher creep rupture strength of about 30 %.  相似文献   

10.
The mechanisms that control high temperature deformation and rupture were studied in a Ni3Al alloy that was thermo-mechanically treated to produce a non-porous dendritic grain structure. Comparisons of data corresponding to the dendritic grain morphology with that for the equiaxed grain structures indicate that the dendritic morphology results in significantly lower creep rates as well as substantially greater times to rupture. Comparison of the data with numerical calculations suggests that this difference in creep strength is due to an inherent resistance to grain boundary sliding by the dendritic grain structure. A constrained cavity growth model was adapted based on microstructural observations to account for cavitation within the dendritic microstructure. The success of the model indicates that rupture time is primarily determined by constrained cavity growth on isolated dendrite boundary segments.  相似文献   

11.
An addition of 40 ppm boron, 0.4 pct vanadium and 0.12 pct nitrogen to an austenitic stainless type steel AISI 316L (0.02 C, 18 Cr, 12 Ni, 2.7 Mo) has considerably improved the creep properties. The improved creep properties are due to a combination of the precipitation of fine stable vanadium nitrides on the dislocations and the precipitation of chromium carbides (M23C6) in the grain boundaries. The latter process is thought to be enhanced by the presence of boron and helps to improve the creep ductility. The precipitation of vanadium nitrides on the dislocations retard the creep rate. The nitrides retain their small size even after long creep testing times. A model is proposed to explain this behavior of the precipitated particles and their interactions with the dislocations.  相似文献   

12.
Two models of constrained cavity growth are developed to describe the long-term longitudinal creep behavior of nickel based oxide dispersion strengthened (ODS) alloys. For both models the rupture time is taken as the time for a transverse grain boundary to cavitate fully. A diffusive cavity growth law is assumed to govern cavitation. The applicability of the respective models is determined by the particular grain morphology achieved by thermal-mechanical processing. The first model assumes that longitudinal grain boundaries are unable to slide; hence displacements due to cavitation must be matched by displacements due to dislocation creep in adjoining grains. This model predicts a low stress exponent at the transition from single crystal to cavitation creep behavior, and higher stress exponents at stresses below this transition. Good agreement is found between the model predictions and creep data for MA 754 at 1000 and 1093 °C. A second model considers a grain morphology wherein longitudinal grain boundaries are able to slide by means of deformation of pockets of fine grains. Cavitation of transverse grain boundaries is thus controlled by grain boundary sliding. This model predicts a stress exponent of 1 at low stresses, and serves as an upper bound for the creep rate when a duplex grain morphology is present. Model predictions are in good agreement with creep data for a heat of MA 754 with a duplex grain morphology. Formerly Graduate Research Assistant in the Department of Materials Science and Engineering at Stanford University  相似文献   

13.
An addition of 40 ppm boron, 0.4 pct vanadium and 0.12 pct nitrogen to an austenitic stainless type steel AISI 316L (0.02 C, 18 Cr, 12 Ni, 2.7 Mo) has considerably improved the creep properties. The improved creep properties are due to a combination of the precipitation of fine stable vanadium nitrides on the dislocations and the precipitation of chromium carbides (M23C6) in the grain boundaries. The latter process is thought to be enhanced by the presence of boron and helps to improve the creep ductility. The precipitation of vanadium nitrides on the dislocations retard the creep rate. The nitrides retain their small size even after long creep testing times. A model is proposed to explain this behavior of the precipitated particles and their interactions with the dislocations. Formerly with Uddeholm AB, Hagfors, Sweden  相似文献   

14.
New ferritic steels with a controlled addition of boron have been developed recently for ultrasuper-critical fossil power plants. These steels possess excellent creep resistance compared to conventional steels like P91, P92, P122, etc., and this has been attributed to the delay in coarsening of the carbides during creep owing to partial replacement of carbon by boron in these carbides. However, the susceptibility of the weld joints of the boron-containing ferritic steels to type IV cracking, which significantly brings down the rupture life of the weld joints, has not been investigated so far. In the present work, the creep properties of recently developed 9Cr-3W-3Co-NbV steels with boron contents varying from 47 to 180 ppm and of their weld joints have been studied. Creep tests were carried out at 923 K in the stress range of 140 to 80 MPa. Specimens were examined for particle coarsening using field-emission scanning electron microscopy, and the boron content in the precipitates was estimated using field-emission auger electron spectroscopy (FE-AES). The grain size of the parent metal and the heat-affected zone (HAZ) were estimated using electron backscattered pattern (EBSP) imaging. Results showed that the creep properties of the steels with 90 and 130 ppm boron and of their weld joints are superior to those of the P92 steels and its weld joints. Further, no weld joints exhibited type IV cracking. No significant coarsening of the carbides was observed, not only in the parent metal but also in the HAZ of the steels with ≥90 ppm of boron. In addition to the delay in carbide coarsening, the large prior-austenite grain size of the parent metal and the absence of a conventional fine-grained HAZ (FGHAZ) in the weld joints also seem to have a beneficial effect on improving the creep properties of these steels and their weld joints.  相似文献   

15.
The effect of carbide precipitation on creep and creep rate curves was investigated for 10Cr-30Mn austenitic steel containing 0.003 to 0.55 wt pct carbon. After solution annealing, the specimens were subjected to creep testing at 873 K for up to 30 Ms (8300 hours). In the low-carbon steels containing below 0.1 wt pct carbon, where carbide precipitation scarcely occurred, the decrease in creep rate with time in the transient creep region was described by log έ = A - (1/3) log t, where A is a constant depending on stress and carbon concentration. On the other hand, in the high-carbon steels containing above 0.2 wt pct carbon, where extensive precipitation of M23C6 occurred, the creep rate decreased significantly at long times above 3 to 5 ks (1 hour), deviating from the preceding equation for the low-carbon steels. The Johnson-Mehl equation with the time exponent n = 2/3 provided a reasonable approximation for the significant decrease in creep rate at long times. This resulted from a stress-induced precipitation of M23C6 on dislocation lines produced by creep deformation. The rate constant of the Johnson-Mehl equation depended on carbon concentration but not on stress levels examined.  相似文献   

16.
《Acta Metallurgica》1986,34(10):1991-1997
Tertiary creep and necking of bars composed of creep damaging material are investigated subject to the condition of constant applied load. The creep-damage constitutive model employed in the study is based on the concept of constrained cavity growth which characterizes the phenomenon of grain boundary cavitation in polycrystalline metals under creep conditions. For a perfect bar, tertiary creep arises from the interaction of cavitation with the geometrical effect of uniform thinning of the area cross section. Two coupled differential equations governing the evolution of the axial strain and area cross section are obtained and solved for the case of linear strain dependent nucleation. Necking is analyzed by considering the deformation of an initially imperfect bar modelled as a series of disk elements. The governing equations are integrated in these elements subject to the approximation that stresses and strains remain uniform throughout the deformation. Results indicate that the mechanism of cavitation can significantly affect the creep response of both the perfect and imperfect bars.  相似文献   

17.
Microalloying elements are useful to achieve maximum improvements of the mechanical properties in boron alloyed steels supposedly because they form precipitates with nitrogen and carbon to protect boron from precipitation. On the other hand, they are most useful for austenitic grain refinement and for the generation of the required minimum austenitic grain size (MAGS). A second heat treatment (700°C 9h/air) before quenching the Jominy samples is only efficient in a certain range of austenitic grain size. No increase of hardenability is observed above a certain plateau austenitic grain size (PAGS) for each steel group. A minimum austenitic grain size (MAGS) is required to achieve maximum strength. Boron can only improve the hardenability and tensile properties, if the austenitic grain size before martensitic transformation is optimal. Titanium appears to be the most effective element to prevent boron precipitation. The hardenability, yield and impact strength of the steel group B–AI–Ti is good, especially for sample 44.  相似文献   

18.
The effect of tungsten on creep behavior and microstructural evolution was investigated for tempered martensitic 9Cr steels with various W concentrations from 0 to 4 wt pct. The creep rupture testing was carried out at 823, 873, and 923 K for up to 54 Ms (15,000 hours). The creep and creep rupture strength increased linearly with W concentration up to about 3 wt pct, where the steels consisted of the single constituent of the tempered martensite. It increased only slightly above 3 wt pct, where the matrix consisted of the tempered martensite and δ-ferrite. The minimum creep rate was described by a power law. The apparent activation energy for the minimum creep rate showed a tendency similar to the W concentration dependence of the creep-rupture strength and was larger than the activation energy for self-diffusion at high W concentrations above 1 wt pct. The martensite lath microstructure with fine carbides along lath boundaries was responsible for a high resistance to creep deformation. With increasing W con- centration, the martensite lath microstructure became stabilized, which decreased the minimum creep rate and increased the apparent activation energy for the minimum creep rate.  相似文献   

19.
The new ferritic heat-resisting steels of 0.05C-10Cr-2Mo-0.10V-0.05Nb (Cb) composition with high creep rupture strength and good ductility have already been reported. The optimum amounts of V and Nb that can be added to the 0.05C-10Cr-2Mo steels and their effects on the creep rupture strength and microstructure of the steels have been studied in this experiment. The optimum amounts of V and Nb are about 0.10 pct V and 0.05 pct Nb at 600 °C for 10,000 h, but shift to 0.18 pct V and 0.05 pct Nb at 650 °C. Nb-bearing steels are preferred to other grades on the short-time side, because NbC precipitation during initial tempering stages delays recovery of martensite. On the long-time side, however, V-bearing steels have higher creep rupture strength. By adding V to the steels, electron microscopic examination reveals a stable microstructure, retardation during creep of the softening of tempered martensite, fine and uniform distribution of precipitates, and promotion of the precipitation of Fe2Mo.  相似文献   

20.
A program to study the effect of Sb, P, Sn and B on creep properties of four normalized and tempered 1.25 Cr-0.5 Mo steels at 538°C (1000°F) has been completed. Results show that even a combined addition of large amounts of Sb, P and Sn does not affect short time creep strength or ductility of the steel at 538°C (1000°F). Addition of B resulted in an increase or decrease of creep strength depending on the nature of the impurity species present, presumably due to B-impurity interactions. Regardless of the effect on creep strength, B additions caused sharp reductions in rupture ductility in all cases. Comparison of the present results on the four laboratory steels (100 pct bainite) with results of a previous study on a commercial steel (60 pct bainite + 40 pct ferrite) show that the effect of microstructure becomes negligible and rupture strength values of the various steels at 538°C (1000°F) approach each other at rupture times in excess of 104 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号