首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evaluation of the creep deformation and fracture behavior of a 2.25Cr-1Mo steel base metal, a 2.25Cr-1Mo/2.25Cr-1Mo similar weld joint, and a 2.25Cr-1Mo/Alloy 800 dissimilar weld joint at 823 K over a stress range of 90 to 250 MPa has been carried out. The specimens for creep testing were taken from single-V weld pads fabricated by a shielded metal arc-welding process using 2.25Cr-1Mo steel (for similar-joint) and INCONEL 182 (for dissimilar-joint) electrodes. The weld pads were subsequently given a postweld heat treatment (PWHT) of 973 K for 1 hour. The microstructure and microhardness of the weld joints were evaluated in the as-welded, postweld heat-treated, and creep-tested conditions. The heat-affected zone (HAZ) of similar weld joint consisted of bainite in the coarse-prior-austenitic-grain (CPAG) region near the fusion line, followed by bainite in the fine-prior-austenitic-grain (FPAG) and intercritical regions merging with the unaffected base metal. In addition to the HAZ structures in the 2.25Cr-1Mo steel, the dissimilar weld joint displayed a definite INCONEL/2.25Cr-1Mo weld interface structure present either as a sharp line or as a diffuse region. A hardness trough was observed in the intercritical region of the HAZ in both weld joints, while a maxima in hardness was seen at the weld interface of the dissimilar weld joint. Both weld joints exhibited significantly lower rupture lives compared to the 2.25Cr-1Mo base metal. The dissimilar weld joint exhibited poor rupture life compared to the similar weld joint, at applied stresses lower than 130 MPa. In both weld joints, the strain distribution across the specimen gage length during creep testing varied significantly. During creep testing, localization of deformation occurred in the intercritical HAZ. In the similar weld joint, at all stress levels investigated, and in the dissimilar weld joint, at stresses ≥150 MPa, the creep failure occurred in the intercritical HAZ. The fracture occurred by transgranular mode with a large number of dimples. At stresses below 150 MPa, the failure in the dissimilar weld joint occurred in the CPAG HAZ near to the weld interface. The failure occurred by extensive intergranular creep cavity formation.  相似文献   

2.
New ferritic steels with a controlled addition of boron have been developed recently for ultrasuper-critical fossil power plants. These steels possess excellent creep resistance compared to conventional steels like P91, P92, P122, etc., and this has been attributed to the delay in coarsening of the carbides during creep owing to partial replacement of carbon by boron in these carbides. However, the susceptibility of the weld joints of the boron-containing ferritic steels to type IV cracking, which significantly brings down the rupture life of the weld joints, has not been investigated so far. In the present work, the creep properties of recently developed 9Cr-3W-3Co-NbV steels with boron contents varying from 47 to 180 ppm and of their weld joints have been studied. Creep tests were carried out at 923 K in the stress range of 140 to 80 MPa. Specimens were examined for particle coarsening using field-emission scanning electron microscopy, and the boron content in the precipitates was estimated using field-emission auger electron spectroscopy (FE-AES). The grain size of the parent metal and the heat-affected zone (HAZ) were estimated using electron backscattered pattern (EBSP) imaging. Results showed that the creep properties of the steels with 90 and 130 ppm boron and of their weld joints are superior to those of the P92 steels and its weld joints. Further, no weld joints exhibited type IV cracking. No significant coarsening of the carbides was observed, not only in the parent metal but also in the HAZ of the steels with ≥90 ppm of boron. In addition to the delay in carbide coarsening, the large prior-austenite grain size of the parent metal and the absence of a conventional fine-grained HAZ (FGHAZ) in the weld joints also seem to have a beneficial effect on improving the creep properties of these steels and their weld joints.  相似文献   

3.
Evaluations of creep rupture properties of dissimilar weld joints of 2.25Cr-1Mo, 9Cr-1Mo, and 9Cr-1MoVNb steels with Alloy 800 at 823 K were carried out. The joints were fabricated by a fusion welding process employing an INCONEL 182 weld electrode. All the joints displayed lower creep rupture strength than their respective ferritic steel base metals, and the strength reduction was greater in the 2.25Cr-1Mo steel joint and less in the 9Cr-1Mo steel joint. Failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of the heat-affected zone (HAZ) of the ferritic steel (type IV cracking) with the decrease in stress. At still lower stresses, the failure in the joints occurred at the ferritic/austenitic weld interface. The stress-life variation of the joints showed two-slope behavior and the slope change coincided with the occurrence of ferritic/austenitic weld interface cracking. Preferential creep cavitation in the soft intercritical HAZ induced type IV failure, whereas creep cavitation at the interfacial particles induced ferritic/austenitic weld interface cracking. Micromechanisms of the type IV failure and the ferritic/austenitic interface cracking in the dissimilar weld joint of the ferritic steels and relative cracking susceptibility of the joints are discussed based on microstructural investigation, mechanical testing, and finite element analysis (FEA) of the stress state across the joint.  相似文献   

4.
Effect of electrode size on creep deformation and rupture behavior has been assessed by carrying out creep tests at 923 K (650 °C) over the stress range 140 to 225 MPa on 316LN stainless steel weld joints fabricated employing 2.5 and 4 mm diameter electrodes. The multi-pass welding technique not only changes the morphology of delta ferrite from vermicular to globular in the previous weld bead region near to the weld bead interface, but also subjects the region to thermo-mechanical heat treatment to generate appreciable strength gradient. Electron backscatter diffraction analysis revealed significant localized strain gradients in regions adjoining the weld pass interface for the joint fabricated with large electrode size. Larger electrode diameter joint exhibited higher creep rupture strength than the smaller diameter electrode joint. However, both the joints had lower creep rupture strength than the base metal. Failure in the joints was associated with microstructural instability in the fusion zone, and the vermicular delta ferrite zone was more prone to creep cavitation. Larger electrode diameter joint was found to be more resistant to failure caused by creep cavitation than the smaller diameter electrode joint. This has been attributed to the larger strength gradient between the beads and significant separation between the cavity prone vermicular delta ferrite zones which hindered the cavity growth. Close proximity of cavitated zones in smaller electrode joint facilitated their faster coalescence leading to more reduction in creep rupture strength. Failure location in the joints was found to depend on the electrode size and applied stress. The change in failure location has been assessed on performing finite element analysis of stress distribution across the joint on incorporating tensile and creep strengths of different constituents of joints, estimated by ball indentation and impression creep testing techniques.  相似文献   

5.
There are efforts to develop modified P91 steel (9Cr-1Mo-V) consumables to optimize strength and fracture toughness in weldments for similar and dissimilar welding of 9Cr-1Mo (modified P91) for both new construction and replacement of serviced components. Fracture toughness is an important consideration which plays a vital role in determining the performance and life of the materials under the given service conditions. Toughness characterization was done by the Crack Tip Opening Displacement (CTOD) method. Welding results in a variety of non-equilibrium microstructures in the HAZ of 9Cr-lMo-V, modified P91 steel. These variations of microstructures from wrought base material through transformed HAZ to cast weld metal, may give rise to considerable inhomogeneity with respect to tensile & creep strength and ductility across the weld joints. However the mechanical properties of the individual regions of HAZ are difficult to obtain because of the small extent over which each region exists. Welded joints are used as structural parts of boilers and pressure vessels working at high temperatures, hence the main requirement is creep resistance. In the present investigation, the fracture toughness characteristics of base metal and weld metal have been evaluated by CTOD method as per the standard BS 7448. The fracture surfaces of the CTOD tested specimens were examined under Scanning Electron Microscope (SEM). Fractographic studies revealed the mode of failure and the characteristics of the fracture surface.  相似文献   

6.
In the postweld heat-treated (PWHT) fusion welded modified 9Cr-1Mo steel joint, a soft zone was identified at the outer edge of the heat-affected zone (HAZ) of the base metal adjacent to the deposited weld metal. Hardness and tensile tests were performed on the base metal subjected to soaking for 5 minutes at temperatures below Ac1 to above Ac3 and tempering at the PWHT condition. These tests indicated that the soft zone in the weld joint corresponds to the intercritical region of HAZ. Creep tests were conducted on the base metal and cross weld joint. At relatively lower stresses and higher test temperatures, the weld joint possessed lower creep rupture life than the base metal, and the difference in creep rupture life increased with the decrease in stress and increase in temperature. Preferential accumulation of creep deformation coupled with extensive creep cavitation in the intercritical region of HAZ led to the premature failure of the weld joint in the intercritical region of the HAZ, commonly known as type IV cracking. The microstructures across the HAZ of the weld joint have been characterized to understand the role of microstructure in promoting type IV cracking. Strength reduction in the intercritical HAZ of the joint resulted from the combined effects of coarsening of dislocation substructures and precipitates. Constrained deformation of the soft intercritical HAZ sandwich between relatively stronger constitutes of the joint induced creep cavitation in the soft zone resulting in premature failure.  相似文献   

7.
Fusion welded joints of Cr-Mo steels fail prematurely under creep condition at the heat affected zone (HAZ) close to the base metal, termed as type IV cracking. Optical metallography and hardness testing across the joint establish that the type IV cracking occurs in the soft intercritical HAZ. Based on detailed microstructural studies carried out to understand the evolution of the microstructure and its role in determining the tendency for type IV cracking, the factors that lead to deterioration of creep strength in intercritical HAZ in weld joint of Cr-Mo steels are:
  1. fine grained structure
  2. coarse M23C6 carbides at grain and sub-grain boundaries
  3. dissolution of M2X and MX types of intragranular precipitates.
In the case of low Cr steels, the dissolution of intragranular Mo2C is an important factor among others in determining the tendency to type IV cracking in the weld joint. On the other hand, in higher Cr alloys, M23C6, which plays a dominant role in determining substructure strengthening by stabilizing the substructures, is found to be the main cause of type IV cracking in the weld joint. The dissolution of finer M23C6 and the accompanying coarsening of the large particles leads to the modification of lath-like substructure having high dislocation density into fine polygonal ferrite having low dislocation density, which in turn reduces the creep strength profoundly. The preferential Z-phase formation accompanied with the dissolution of intragranular (Nb,V)(C,N) in the intercritical HAZ is also considered as a factor for the type IV cracking on longer creep exposure. The paper would highlight and discuss in detail some of our results on these lines.  相似文献   

8.
A potential material class for use at 600°C and more, e.g. for steam turbines with improved thermal efficiency, are austenitic steels. Using these steels with welded joints, it is to be considered that, by superposition of weld residual stresses and service stresses, extensive creep strains – and in the worst case crack formation – can occur locally. To assess the influence of these effects on service behaviour, different material states of CrNi-steels and Incoloy 800 were investigated with respect to strength, ductility and, especially, to crack and creep crack growth in the temperature range around 600°C. It is shown that creep embrittlement, not microstructural changes as effected by weld heat input, causes heat affected zone (HAZ)-reheat cracking. Creep embrittlement can be avoided by special design and fabrication rules.  相似文献   

9.
Modified 9Cr-1Mo steel (ASME Grade 91 steel) is used as a key structural material for boiler components in ultra-supercritical (USC) thermal power plants at approximately 873 K (600 °C). The creep strength of welded joints of this steel decreases as a result of Type IV creep cracking that forms in the heat-affected zone (HAZ) under long-term use at high temperatures. The current article aims to elucidate the damage processes and microstructural degradations that take place in the HAZ of these welded joints. Long-term creep tests for base metal, simulated HAZ, and welded joints were conducted at 823 K, 873 K, and 923 K (550 °C, 600 °C, and 650 °C). Furthermore, creep tests of thick welded joint specimens were interrupted at several time steps at 873 K (600 °C) and 90 MPa, after which the distribution and evolution of creep damage inside the plates were measured quantitatively. It was found that creep voids are initiated in the early stages (0.2 of life) of creep rupture life, which coalesce to form a crack at a later stage (0.8 of life). In a fine-grained HAZ, creep damage is concentrated chiefly in an area approximately 20 pct below the surface of the plate. The experimental creep damage distributions coincide closely with the computed results obtained by damage mechanics analysis using the creep properties of a simulated fine-grained HAZ. Both the concentration of creep strain and the high multiaxial stress conditions in the fine-grained HAZ influence the distribution of Type IV creep damage.  相似文献   

10.
Finite element modelling of the creep deformation of T91 steel weldments, welded using the manual metal arc (MMA) and submerged arc (SA) welding processes, was carried out to predict creep curves for both of the weldments under different stresses and compared with the experimental data. The stress and strain redistribution across the length of the transverse-weld specimens has also been predicted. Data of creep tests at 600°C at stresses between 90-130 MPa for the base metal, the MMA and SA weld metals, and the simulated heat-affected zone were used to determine Garofalo's equation for creep strain. Finite element meshes for both of the weldments were constructed after calculating the HAZ locations using Rosenthal's heat flow equation.  相似文献   

11.
The creep properties of a nuclear-grade type 316(L) stainless steel (SS) alloyed with nitrogen (316L(N) SS) and its weld metal were studied at 873 and 923 K in the range of applied stresses from 100 to 335 MPa. The results were compared with those obtained on a nuclear-grade type 316 SS, which is lean in nitrogen. The creep rupture lives of the weld metals were found to be lower than those of the respective base metals by a factor of 5 to 10. Both the base and weld metals of 316L(N) SS exhibited better resistance to creep deformation compared to their 316 SS counterparts at identical test conditions. A power-law relationship between the minimum creep rate and applied stress was found to be obeyed for both the base and weld metals. Both the weld metals generally exhibited lower rupture elongation than the respective base metals; however, at 873 K, the 316 SS base and weld metals had similar rupture elongation at identical applied stresses. Comparison of the rupture lives of the two steels to the ASME curves for the expected minimum stress to rupture for 316 SS base and weld metals showed that, for 316L(N) SS, the specifications for maximum allowable stresses based on data for 316 SS could prove overconservative. The influence of nitrogen on the creep deformation and fracture behavior, especially in terms of its modifying the precipitation kinetics, is discussed in light of the microstructural observations. In welds containing δ ferrite, the kinetics of its transformation and the nature of the transformation products control the deformation and fracture behavior. The influence of nitrogen on the δ ferrite transformation behavior and coarsening kinetics is also discussed, on the basis of extensive characterization by metallographic techniques.  相似文献   

12.
Creep tests were carried out on 2.25Cr-1Mo ferritic steel base metal and its fusion welded joint at 823 K over a stress range of 100–240 MPa. The weld joint possessed lower creep rupture strength than the base metal and the reduction was more at lower applied stresses. The failure occurred in the intercritical region of heat-affected zone (HAZ) of the joint, commonly known as Type IV cracking. Type IV cracking in the joint was manifested as pronounced localization of creep deformation in the soft intercritical region of HAZ coupled with preferential creep cavitation. The creep cavitation in intercritical HAZ was found to initiate at the central region of the creep specimen and propagate outwards to the surface. To explain the above observations, the stress and strain distributions across the weld joint during creep exposure were estimated by using finite element analysis. For this purpose creep tests were also carried out on the deposited weld metal and simulated HAZ structures (viz. coarse-grain structure, fine-grain structure, and intercritically annealed structure) of the joint. Creep rupture strength of different constituents of joint were in the increasing order of intercritical HAZ, fine-grain HAZ, base metal, weld metal and coarse-grain HAZ. Localized preferential creep straining in the intercritical HAZ of weld joint as observed experimentally was supported by the finite element analysis. Estimated higher principal stress at the interior regions of intercritical HAZ explained the pronounced creep cavitation at these regions leading to Type IV failure of the joint.  相似文献   

13.
The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).  相似文献   

14.
赵威  黄瑾  胥国华  王磊 《钢铁》2022,57(10):148-157
 核能已经逐渐取代化石能源成为新一代能源,作为重要构件的高温气冷堆中间换热器得到了广泛关注。由于GH3128合金具有较好的焊接性、较高的高温抗氧化性能和组织稳定性,有望成为超高温气冷堆中间换热器的候选材料,但基于换热器结构复杂性以及密封性的要求,焊接是其生产和制造的关键成形手段。采用脉冲钨极氩弧焊(GTAW)对GH3128合金2 mm板材进行对接焊,研究了热处理对焊接焊接接头显微组织以及应力的影响。结果表明,在优化焊接工艺参数下,固溶态板材接头表现出最高的强塑性,室温及高温拉伸断裂位置均为母材。由于热轧态与固溶态板材接头热影响区在焊接过程中产生残余应力,导致该区硬化,在高温变形过程中残余应力诱发热影响区μ相析出,对接头持久、蠕变性能造成不利影响。焊后热处理消除了接头热影响区的残余应力,减少了持久、蠕变过程中μ相的析出,接头持久寿命得以改善。在1 200 ℃下,残余应力可为焊后热处理过程中静态再结晶提供激活能,接头热影响区发生再结晶,硬度下降,接头塑性变形能力不协调,导致室温拉伸与950 ℃拉伸断裂位置均为焊接接头。对固溶态板材试样进行不同的焊后热处理,EBSD扫描结果分析发现,接头经过1 100 ℃×10 min热处理后,残余应力明显消失,温度升高至1 140 ℃后,热影响区开始发生再结晶。  相似文献   

15.
The aim of this paper is to characterize the principal microstructural features of continuously cast high purity copper (99.999 pct Cu), particularly those which might influence high temperature creep. This material contains a cellular solidification structure resulting from impurity segregation due to constitutional supercooling of the melt during solidification. This structure could not be eliminated from the solid copper by thermomechanical treatment. The grown-in structure was studied using optical and electron metallography as well as etch-pitting techniques. In the as-cast material a loose network of dislocation tangles was observed, and in certain locations, preferential etching attack. In addition, small voids were found within the dislocation tangles. Thermomechanical treatment eliminated the dislocation tangles almost entirely, but left locations susceptible to preferential etching attack. At those locations impurities were probably concentrated into zones of a size of a few 1000Å. From solubility and concentration considerations, small precipitates (less than 80Å in size) or clusters of carbon are suspected.  相似文献   

16.
The difference in creep strength between a base metal and a weld metal always produces a multiaxial stress state even if the macroscopic loading is uniaxial. In this study, weldments were formed between wrought 316 stainless steel and two types of 316 weld metals with slightly different creep properties and chemical compositions. Full-size 316 weldments, including base metal, heat-affected zone (HAZ) and welds, were creep tested at 650 °C. The multiaxial stress distributions in full-size 316 weldments were simulated by the finite element method (FEM). Three stress parameters, namely, the maximum principal stress (MPS), the yon Mises effective stress (VMS), and the principal facet stress (PFS), were used to correlate the local multiaxial stresses with local creep damage distributions and failure lifetime. Metallographic examination and creep rupture data showed that the PFS parameter gave the best prediction of the creep damage distribution caused by the multiaxial stresses in 316 weldments. This approach may have application in the design, life prediction, and in-service evaluation of weldments. Performed this work at Ohio State This article is based on a presentation made at the “High Temperature Fracture Mechanisms in Advanced Materials” sympsosium as a part of the 1994 Fall meeting of TMS, October 2-6, 1994, in Rosemont, Illinois, under the auspices of the ASM/SMD Flow and Fracture Committee.  相似文献   

17.
Welding is always accompanied by a heat treatment of the base metal. The heat affected zone (HAZ) of multilayer welded joints often shows different microstructures along the fusion line due to varying heat treatments. In order to investigate the mechanical properties of single microstructures weld simulation treatment was applied. The influence of weld simulation parameters such as heating rate and peak temperature was checked in a preliminary step. Several weld simulation treatments finally were used to explain the behaviour of real welded joints. A comparison of fracture mechanics test results from weld simulated microstructures and from real HAZ's shows good agreement for equal heat treatment conditions.  相似文献   

18.
Improvement of life assessment technologies for power plant materials and components is important in order to meet demands for economy and reliability. As for steam turbines, blade root and disc joints are one of the critical parts in turbines that experience the most severe creep and fatigue damage under high temperature or corrosive environment. In these parts, the structural stress concentration areas are close to the contact planes of blades and rotors, and this produces a complicated stress-strain field. Therefore, life assessment technologies based on precise stress analysis methods and damage mechanisms are necessary to ensure the reliability and economy of steam turbines. In this paper, creep and fatigue tests results by using component specimens simulating blade and rotor joint portions are described. Damage mechanisms of joint portions were investigated based on the observations of the micro-crack initiation and growth behaviors. Life assessment methodologies for joint structures are also discussed, based on the micro-damage, micro-crack or micro-cavity, and nonlinear finite element analyses of component specimens.  相似文献   

19.
Focused on the girth weld of a Φ762 × 28. 6 mm( X65) offshore UOE pipe,the fracture toughness properties at different weld joint positions were tested. Meanwhile,the largest size of different cracks under service condition was calculated by using CRACKWISE. The service life of the UOE pipe with postulated crack-like flaws was calculated by considering various fatigue factors,such as vibrations caused by ocean current and fluctuations of inner pressure. The assessment process and results can be used to direct the repair of weld flaws laid in pipes or to assess the reliability of in-serving pipes.  相似文献   

20.
Sodium cooled fast reactors (SFRs) are designed to operate at high temperatures with an initial design life of about 40 years. Austenitic stainless steel (SS) types 304 and 316 and their variants have been generally used for out-of-core structural components of the reactor assembly system. The choice of these two grades of stainless steels is decided by several important factors such as high temperature mechanical properties like creep, low cycle fatigue and creep-fatigue interaction, compatibility with liquid sodium coolant, weldability, fabricability and cost. The components which operate in the creep temperature range are made of 316 SS. This material has been used extensively in the early SFRs. Studies on long term creep properties of 316 SS have clearly established the good creep resistance of this material and the microstructural stability at temperatures below 873 K. In view of the susceptibility of welded components to stress corrosion cracking, low carbon grades of 304 and 316 SS with alloying addition of nitrogen (designated as 304L(N) SS and 316L(N) SS) are used for structural components of later generation of SFRs. Nitrogen addition in the range of 0.06–0.08 wt% produces significant improvement in the creep properties of this material through solid solution strengthening and lowering of stacking fault energy. In view of the recent trends to increase the design life of SFRs to 60 years and more, it is necessary that non-replaceable structural components of reactor assembly have sufficient high temperature mechanical properties over such very long periods of operation. Increasing the nitrogen content from 0.06–0.08 wt % to levels of 0.12–0.14 wt% has been found to increase creep rupture life of 316LN SS by an order of magnitude. The beneficial effects of nitrogen are also extended to type 316 SS weld metal. This paper discusses the progressive improvements in the creep properties of 316 SS grade by varying the amounts of interstitial elements carbon and nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号