首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main methods for improving the efficiency of the combined cycle are: increasing the inlet temperature of the gas turbine (TIT), reducing the irreversibility of the heat recovery steam generator (HRSG), and optimization. In this paper, modeling and optimization of the triple-pressure reheat combined cycle as well as irreversibility reduction of its HRSG are considered. Constraints were set on the minimum temperature difference for pinch points (PPm), the temperature difference for superheat approach, the steam turbine inlet temperature and pressure, the stack temperature, and the dryness fraction at steam turbine outlet. The triple-pressure reheat combined cycle was optimized at 41 different maximum values of TIT using two different methods; the direct search and the variable metric. A feasible technique to reduce the irreversibility of the HRSG of the combined cycle was introduced. The optimized and the reduced-irreversibility triple-pressure reheat combined cycles were compared with the regularly designed triple-pressure reheat combined cycle, which is the typical design for a commercial combined cycle. The effects of varying the TIT on the performance of all cycles were presented and discussed. The results indicate that the optimized triple-pressure reheat combined cycle is up to 1.7% higher in efficiency than the reduced-irreversibility triple-pressure reheat combined cycle, which is 1.9–2.1% higher in efficiency than the regularly designed triple-pressure reheat combined cycle when all cycles are compared at the same values of TIT and PPm. The optimized and reduced-irreversibility combined cycles were compared with the most efficient commercially available combined cycle at the same value of TIT.  相似文献   

2.
Increasing the inlet temperature of gas turbine (TIT) and optimization are important methods for improving the efficiency and power of the combined cycle. In this paper, the triple‐pressure steam‐reheat gas‐reheat recuperated combined cycle (the Regular Gas‐Reheat cycle) was optimized relative to its operating parameters, including the temperature differences for pinch points (δTPP). The optimized triple‐pressure steam‐reheat gas‐reheat recuperated combined cycle (the Optimized cycle) had much lower δTPP than that for the Regular Gas‐Reheat cycle so that the area of heat transfer of the heat recovery steam generator (HRSG) of the Optimized cycle had to be increased to keep the same rate of heat transfer. For the same mass flow rate of air, the Optimized cycle generates more power and consumes more fuel than the Regular Gas‐Reheat cycle. An objective function of the net additional revenue (the saving of the optimization process) was defined in terms of the revenue of the additional generated power and the costs of replacing the HRSG and the additional fuel. Constraints were set on many operating parameters such as the minimum temperature difference for pinch points (δTPPm), the steam turbines inlet temperatures and pressures, and the dryness fraction at steam turbine outlet. The net additional revenue was optimized at 11 different maximum values of TIT using two different methods: the direct search and variable metric. The performance of the Optimized cycle was compared with that for the Regular Gas‐Reheat cycle and the triple‐pressure steam‐reheat gas‐reheat recuperated reduced‐irreversibility combined cycle (the Reduced‐Irreversibility cycle). The results indicate that the Optimized cycle is 0.17–0.35 percentage point higher in efficiency and 5.3–6.8% higher in specific work than the Reduced‐Irreversibility cycle, which is 2.84–2.91 percentage points higher in efficiency and 4.7% higher in specific work than the Regular Gas‐Reheat cycle when all cycles are compared at the same values of TIT and δTPPm. Optimizing the net additional revenue could result in an annual saving of 33.7 million US dollars for a 481 MW power plant. The Optimized cycle was 3.62 percentage points higher in efficiency than the most efficient commercially available H‐system combined cycle when compared at the same value of TIT. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A.M. Bassily   《Applied Energy》2008,85(12):1141-1162
The main methods for improving the efficiency or power of the combined cycle are: increasing the inlet temperature of the gas turbine (TIT), inlet air-cooling, applying gas reheat, steam or water injection into the gas turbine (GT), and reducing the irreversibility of the heat recovery steam generator (HRSG). In this paper, gas reheat with recuperation was applied to the regular triple-pressure steam-reheat combined cycle (the Regular cycle) by replacing the GT unit with a recuperated gas-reheat GT unit (requires two gas turbines, gas recuperator, and two combustion chambers). The Regular cycle with gas-reheat and gas-recuperation (the Regular Gas Reheat cycle) was modeled including detailed modeling of the combustion and GT cooling processes and a feasible technique to reduce the irreversibility of its HRSG was introduced. The Regular Gas Reheat cycle and the Regular Gas Reheat cycle with reduced-irreversibility HRSG (the Reduced Irreversibility cycle) were compared with the Regular cycle, which is the typical design for a commercial combined cycle. The effects of varying the TIT on the performances of all cycles were presented and discussed. The results indicate that the Reduced Irreversibility cycle is 1.9–2.15 percentage points higher in efficiency and 3.5% higher in the total specific work than the Regular Gas Reheat cycle, which is 3.3–3.6 percentage points higher in efficiency and 22–26% higher in the total specific work than the Regular cycle. The Regular Gas Reheat and Reduced Irreversibility cycles are 1.18 and 3.16 percentage points; respectively, higher in efficiency than the most efficient commercially-available combined cycle at the same value of TIT. Economic analysis was performed and showed that applying gas reheat with recuperation to the Regular cycle could result in an annual saving of 10.2 to 11.2 million US dollars for a 339 MW to 348 MW generating unit using the Regular cycle and that reducing the irreversibility of the HRSG of the Regular Gas Reheat cycle could result in an additional annual saving of 11.8 million US dollars for a 439 MW generating unit using the Regular Gas Reheat cycle.  相似文献   

4.
Optimization is an important method for improving the efficiency and power of the combined cycle. In this paper, the triple‐pressure steam‐reheat gas‐reheat gas‐recuperated combined cycle that uses steam for cooling the first gas turbine (the regular steam‐cooled cycle) was optimized relative to its operating parameters. The optimized cycle generates more power and consumes more fuel than the regular steam‐cooled cycle. An objective function of the net additional revenue (the saving of the optimization process) was defined in terms of the revenue of the additional generated power and the costs of replacing the heat recovery steam generator (HRSG) and the costs of the additional operation and maintenance, installation, and fuel. Constraints were set on many operating parameters such as air compression ratio, the minimum temperature difference for pinch points (δTppm), the dryness fraction at steam turbine outlet, and stack temperature. The net additional revenue and cycle efficiency were optimized at 11 different maximum values of turbine inlet temperature (TIT) using two different methods: the direct search and the variable metric. The optima were found at the boundaries of many constraints such as the maximum values of air compression ratio, turbine outlet temperature (TOT), and the minimum value of stack temperature. The performance of the optimized cycles was compared with that for the regular steam‐cooled cycle. The results indicate that the optimized cycles are 1.7–1.8 percentage points higher in efficiency and 4.4–7.1% higher in total specific work than the regular steam‐cooled cycle when all cycles are compared at the same values of TIT and δTppm. Optimizing the net additional revenue could result in an annual saving of 21 million U.S. dollars for a 439 MW power plant. Increasing the maximum TOT to 1000°C and replacing the stainless steel recuperator heat exchanger of the optimized cycle with a super‐alloys‐recuperated heat exchanger could result in an additional efficiency increase of 1.1 percentage point and a specific work increase of 4.8–7.1%. The optimized cycles were about 3.3 percentage points higher in efficiency than the most efficient commercially available H‐system combined cycle when compared at the same value of TIT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
《能源学会志》2014,87(2):81-88
In this paper, a gas turbine cycle is modeled to investigate the effects of important operating parameters like compressor inlet temperature (CIT), turbine inlet temperature (TIT) and pressure ratio (PR) on the overall cycle performance and CO2 emissions. Such effects are also investigated on the exergy destruction and exergy efficiency of the cycle components. Furthermore, multiple polynomial regression models are developed to correlate the response variables (performance characteristics) and predictor variables (operating parameters). The operating parameters are then optimized. According to the results, operating parameters have a significant effect on the cycle performance and CO2 emissions. The largest exergy destruction is found in the combustion chamber with lowest exergy efficiency. The regression models have appeared to be a good estimator of the response variables. The optimal operating parameters for maximum performance have been determined as 288 K for CIT, 1600 K for TIT and 23.2 for PR.  相似文献   

6.
This study provides a computational analysis to investigate the effects of cycle pressure ratio, turbine inlet temperature (TIT), and ambient relative humidity (φ) on the thermodynamic performance of an indirect intercooled reheat regenerative gas turbine cycle with indirect evaporative cooling of the inlet air and evaporative aftercooling of the compressor discharge. Combined first and second‐law analysis indicates that the exergy destruction in various components of gas turbine cycles is significantly affected by compressor pressure ratio and turbine inlet temperature, and is not at all affected by ambient relative humidity. It also indicates that the maximum exergy is destroyed in the combustion chamber; which represents over 60% of the total exergy destruction in the overall system. The net work output, first‐law efficiency, and the second‐law efficiency of the cycle significantly varies with the change in the pressure ratio, turbine inlet temperature and ambient relative humidity. Results clearly shows that performance evaluation based on first‐law analysis alone is not adequate, and hence more meaningful evaluation must include second‐law analysis. Decision makers should find the methodology contained in this paper useful in the comparison and selection of gas turbine systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
This paper mainly studied the solid oxide fuel cell (SOFC)–micro gas turbine (MGT) hybrid power system. The key parameters that greatly influence the overall system performance have been studied and optimized. The thermodynamic potential of improving the hybrid system performance by integrating SOFC with the advanced thermal cycle system is analyzed. The optimization rules of main parameters of SOFC‐MGT hybrid power system with the turbine inlet temperature (TIT) of MGT as a constraint condition are revealed. The research results show that TIT is a key parameter that limits the electrical efficiency of hybrid power system. With the increase of the cell number, both the power generation efficiency of the hybrid cycle power system and TIT increase. Regarding the hybrid system with the fixed cell number, in order to get a higher electrical efficiency, the operating temperature of SOFC should be enhanced as far as possible. However, the higher operating temperature will result in the higher TIT. Increasing of fuel utilization factor is an effective measure to improve the performance of hybrid system. At the same time, TIT increases slightly. Both the electrical efficiency of hybrid power system and TIT reduce with the increase of the ratio of steam to carbon. The achievements obtained from this paper will provide valuable information for further study on SOFC‐MGT hybrid power system with high efficiency. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, the performance of ideal open cycle gas turbine system was examined based on its thermodynamic analysis. The effects of some parameters, such as compressor inlet temperature (CIT), pressure ratio (PR) and the turbine inlet temperature (TIT), on the performance parameters of open cycle gas turbine were discussed. The turbine net power output, the thermal efficiency and the fuel consumption of the turbine were taken as the performance parameters. The values of these parameters were calculated using some basic cycle equations and variables values of thermodynamic properties. Other variables such as lower heating value, combustion efficiency and isentropic efficiencies of compressor and turbine were assumed to be constant. The result showed that the net power output and the thermal efficiency increased by a decrease in the CIT and increase in the TIT and PR values. If it is aimed to have a high net power output and the thermal efficiency for the turbine, the CIT should be chosen as low as possible and the TIT should be chosen as high as possible. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
《Energy》2005,30(1):5-39
A concept for natural-gas (NG) fired power plants with CO2 capture was investigated using exergy analysis. NG was reformed in an auto-thermal reformer (ATR), and the CO2 was separated before the hydrogen-rich fuel was used in a conventional combined-cycle (CC) process. The main purpose of the study was to investigate the integration of the reforming process and the combined cycle. A corresponding conventional CC power plant with no CO2 capture was simulated for comparison. A base case with CO2 capture was specified with turbine-inlet temperature (TIT) of 1250 °C and an air-compressor outlet pressure of 15.6 bar. In this case, the net electric-power production was 48.9% of the lower heating value (LHV) of the NG or 46.9% of its chemical exergy. The captured and compressed CO2 (200 bar) represented 3.1% of the NG chemical exergy, while the NG, due to its pressure (50 bar), had a physical exergy equal to 1.0% of its chemical exergy. The effects of the changed NG composition and environmental temperature were investigated. Higher pressure in the gas turbine and reformer increased the combustion in the ATR and reduced the overall efficiency. Supplementary firing (SF) was investigated as an alternative means of heating the ATR. This also reduced the efficiency. Heating the feeds of the ATR with its product stream was shown to reduce the irreversibility and improve the efficiency of the plant. Both this, and the effect of increased TIT to 1450 °C were investigated. Combining both measures, the net electric-power production was increased to 53.3% of the NG LHV or 51.1% of the NG chemical exergy. On the other hand, both increased TIT and the ATR product-feed heat exchange reduced the conversion of hydrocarbons to CO2.  相似文献   

10.
Parabolic dish solar collector system has capability to gain higher efficiency by converting solar radiations to thermal heat due to its higher concentration ratio. This paper examines the exergo-economic analysis, net work and hydrogen production rate by integrating the parabolic dish solar collector with two high temperature supercritical carbon dioxide (s-CO2) recompression Brayton cycles. Pressurized water (H2O) is used as a working fluid in the solar collector loop. The various input parameters (direct normal irradiance, ambient temperature, inlet temperature, turbine inlet temperature and minimum cycle temperature) are varied to analyze the effect on net power output, hydrogen production rate, integrated system energetic and exergetic efficiencies. The simulations has been carried out using engineering equation solver (EES). The outputs demonstrate that the net power output of the integrated reheat recompression s-CO2 Brayton system is 3177 kW, whereas, without reheat integrated system has almost 1800 kW net work output. The overall energetic and exergetic efficiencies of former system is 30.37% and 32.7%, respectively and almost 11.6% higher than the later system. The hydrogen production rate of the solarized reheat and without reheat integrated systems is 0.0125 g/sec and 0.007 g/sec, accordingly and it increases with rise in direct normal irradiance and ambient temperature. The receiver has the highest exergy destruction rate (nearly 44%) among the system components. The levelized electricity cost (LEC) of 0.2831 $/kWh with payback period of 9.5 years has proved the economic feasibility of the system design. The increase in plant life from 10 to 32 years with 8% interest rate will decrease the LEC from (0.434-0.266) $/kWh. Recuperators have more potential for improvement and their cost rate of exergy is higher as compared to the other components.  相似文献   

11.
Pouria Ahmadi  Ibrahim Dincer   《Energy》2010,35(12):5161-5172
In the present work, a combined heat and power plant for cogeneration purposes that produces 50 MW of electricity and 33.3 kg/s of saturated steam at 13 bar is optimized using genetic algorithm. The design parameters of the plant considered are compressor pressure ratio (rAC), compressor isentropic efficiency (ηcomp), gas turbine isentropic efficiency (ηGT), combustion chamber inlet temperature (T3), and turbine inlet temperature (TIT). In addition, to optimally find the optimum design parameters, an exergoeconomic approach is employed. A new objective function, representing total cost rate of the system product including cost rate of each equipment (sum of the operating cost, related to the fuel consumption) and cost rate of environmental impact (NOx and CO) is considered. Finally, the optimal values of decision variables are obtained by minimizing the objective function using evolutionary genetic algorithm. Moreover, the influence of changes in the demanded power on various design parameters are parametrically studied for 50, 60, 70 MW of net power output. The results show that for a specific unit cost of fuel, the values of design parameters increase, as the required, with net power output increases. Also, the variations of the optimal decision variables versus unit cost of fuel reveal that by increasing the fuel cost, the pressure ratio, rAC, compressor isentropic efficiency, ηAC, turbine isentropic efficiency, ηGT, and turbine inlet temperature (TIT) increase.  相似文献   

12.
Inlet air cooling and cooling of the compressor discharge using water injection boost both efficiency and power of gas turbine cycles. Four different layouts of the recuperated gas turbine cycle are presented. Those layouts include the effect of evaporative inlet and aftercooling (evaporative cooling of the compressor discharge). A parametric study of the effect of turbine inlet temperature (TIT), ambient temperature, and relative humidity on the performance of all four layouts is investigated. The results indicate that as TIT increases the optimum pressure ratio increases by 0.45 per 100 K for the regular recuperated cycle and by 1.4 per 100 K for the recuperated cycle with evaporative aftercooling. The cycles with evaporative aftercooling have distinctive pattern of performance curves and higher values of optimum pressure ratios. The results also showed that evaporative cooling of the inlet air could boost the efficiency by up to 3.2% and that evaporative aftercooling could increase the power by up to about 110% and cycle efficiency by up to 16%.  相似文献   

13.
A thermal‐economic analysis of a transcritical Rankine power cycle with reheat enhancement using a low‐grade industrial waste heat is presented. Under the identical operating conditions, the reheat cycle is compared to the non‐reheat baseline cycle with respect to the specific net power output, the thermal efficiency, the heat exchanger area, and the total capital costs of the systems. Detailed parametric effects are investigated in order to maximize the cycle performance and minimize the system unit cost per net work output. The main results show that the value of the optimum reheat pressure maximizing the specific net work output is approximately equal to the one that causes the same expansion ratio across each stage turbine. Relative performance improvement by reheat process over the baseline is augmented with an increase of the high pressure but a decrease of the turbine inlet temperature. Enhancement for the specific net work output is more significant than that for the thermal efficiency under each condition, because total heat input is increased in the reheat cycle for the reheat process. The economic analysis reveals that the respective optimal high pressures minimizing the unit heat exchanger area and system cost are much lower than that maximizing the energy performance. The comparative analysis identifies the range of operating conditions when the proposed reheat cycle is more cost effective than the baseline. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This paper focuses on novel integration of high temperature solid oxide fuel cell coupled with recuperative gas turbine (with air-film cooling of blades) based hybrid power plant (SOFC-blade cooled GT). For realistic analysis of gas turbine cycle air-film blade cooling technique has been adopted. First law thermodynamic analysis investigating the combine effect of film cooling of blades, SOFC, applied to a recuperated gas turbine cycle has been reported. Thermodynamic modeling for the proposed cycle has been presented. Results highlight the influence of film cooling of blades and operating parameters of SOFC on various performance of SOFC-blade cooled GT based hybrid power plant. Moreover, parametric investigation has also been done to examine the effect of compressor pressure ratio, turbine inlet temperature, on hybrid plant efficiency and plant specific work. It has been found that on increasing turbine inlet temperature (TIT) beyond a certain limit, the efficiency of gas turbine starts declining after reaching an optimum value which is compensated by continuous increase in SOFC efficiency with increase in operating temperature. The net result is higher performance of hybrid cycle with increase in maximum cycle temperature. Furthermore, it has been observed that at TIT 1600 K and compression ratio 20, maximum efficiency of 73.46% can been achieved.  相似文献   

15.
Biomass based decentralized power generation using externally fired gas turbine (EFGT) can be a technically feasible option. In this work, thermal performance and sizing of such plants have been analyzed at different cycle pressure ratio (rp = 2−8), turbine inlet temperature (TIT = 1050–1350 K) and the heat exchanger cold end temperature difference (CETD = 200–300 K). It is found that the thermal efficiency of the EFGT plant reaches a maximum at an optimum pressure ratio depending upon the TIT and heat exchanger CETD. For a particular pressure ratio, thermal efficiency increases either with the increase in TIT or with the decrease in heat exchanger CETD. The specific air flow, associated with the size of the plant equipment, decreases with the increase in pressure ratio. This decrease is rapid at the lower end of the pressure ratio (rp < 4) but levels-off at higher rp values. An increase in the TIT reduces the specific air flow, while a change in the heat exchanger CETD has no influence on it. Based on this comparison, the performance of a 100 kW EFGT plant has been analyzed for three sets of operating parameters and a trade-off in the operating condition is reached.  相似文献   

16.
Sanjay 《Energy》2011,36(1):157-167
The paper deals with second law thermodynamic analysis of a basic gas turbine based gas-steam combined cycle. The article investigates the effect of variation of cycle parameters on rational efficiency and component-wise non-dimensionalised exergy destruction of the plant. Component-wise inefficiencies of the combined cycle have been quantified with the objective to pin-point the major sources of exergy destruction. The parameter that affects cycle performance most is the TIT (turbine inlet temperature). TIT should be kept on the higher side, because at lower values, the exergy destruction is higher. The summation of total exergy destruction of all components in percentage terms is lower (44.88%) at TIT of 1800 K & rp,c = 23, as compared to that at TIT = 1700 K. The sum total of rational efficiency of gas turbine and steam turbine is found to be higher (54.91%) at TIT = 1800 K & rp,c = 23, as compared to that at TIT = 1700 K. Compressor pressure ratio also affects the exergy performance. The sum total of exergy destruction of all components of the combined cycle plant is lower (44.17%) at higher value of compressor pressure ratio (23)& TIT = 1700 K, as compared to that at compressor pressure ratio (16). Also exergy destruction is minimized with the adoption of multi-pressure-reheat steam generator configuration.  相似文献   

17.
Combined cycle configuration has the ability to use the waste heat from the gas turbine exhaust gas using the heat recovery steam generator for the bottoming steam cycle. In the current study, a natural gas‐fired combined cycle with indirectly fired heating for additional work output is investigated for configurations with and without reheat combustor (RHC) in the gas turbine. The mass flow rate of coal for the indirect‐firing mode in circulating fluidized bed (CFB) combustor is estimated based on fixed natural gas input for the gas turbine combustion chamber (GTCC). The effects of pressure ratio, gas turbine inlet temperature, inlet temperatures to the air compressor and to the GTCC on the overall cycle performance of the combined cycle configuration are analysed. The combined cycle efficiency increases with pressure ratio up to the optimum value. Both efficiency and net work output for the combined cycle increase with gas turbine inlet temperature. The efficiency decreases with increase in the air compressor inlet temperature. The indirect firing of coal shows reduced use with increase in the turbine inlet temperature due to increase in the use of natural gas. There is little variation in the efficiency with increase in GTCC inlet temperature resulting in increased use of coal. The combined cycle having the two‐stage gas turbine with RHC has significantly higher efficiency and net work output compared with the cycle without RHC. The exergetic efficiency also increases with increase in the gas turbine inlet temperature. The exergy destruction is highest for the CFB combustor followed by the GTCC. The analyses show that the indirectly fired mode of the combined cycle offers better performance and opportunities for additional net work output by using solid fuels (coal in this case). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Integrating fuel cells with conventional gas turbine based power plant yields higher efficiency, especially solid oxide fuel cell (SOFC) with gas turbine (GT). SOFCs are energy efficient devices, performance of which are not limited to Carnot efficiency and considered as most promising candidate for thermal integration with Brayton cycle. In this paper, a novel and optimal thermal integration of SOFC with intercooled-recuperated gas turbine has been presented. A thermodynamic model of a proposed hybrid cycle has been detailed along with a novelty of adoption of blade cooled gas turbine model. On the basis of 1st and 2nd law of thermodynamics, parametric analysis has been carried out, in which impact of turbine inlet temperature and compression ratio has been observed on various output parameters such as hybrid efficiency, hybrid plant specific work, mass of blade coolant requirement and entropy generation rate. For optimizing the system performance, entropy minimization has been carried out, for which a constraint based algorithm has been developed. The result shows that entropy generation of a proposed hybrid cycle first increases and then decreases, as the turbine inlet temperature of the cycle increases. Furthermore, a unique performance map has also been plotted for proposed hybrid cycle, which can be utilized by power plant designer. An optimal efficiency of 74.13% can be achieved at TIT of 1800 K and rp,c 20.  相似文献   

19.
This study investigated the cycle optimization of four-bed, silica gel–water adsorption with reheat cycle, where the desorber (upper bed) and adsorber (lower bed) always interact with the condenser and evaporator, to exploit a low heat-source temperature. In a previous study, the performance of a reheat cycle with chilled water outlet temperature fixed at 9°C was observed without considering the cycle optimization. Maintaining a constant chilled water outlet temperature is also of equal importance to improve the conversion efficiency so that maximum cooling capacity can be derived. In this paper, a simulation model of reheat adsorption cycles is developed to analyze the optimization of the cycle time, including adsorption/desorption time, mass recovery time, and preheating/precooling time, with chilled water outlet temperature fixed. The reheat working principle is also introduced. The proposed cycle is compared with the four-bed versison without reheat cycle in terms of coefficient of performance (COP) and cooling capacity. The result shows that the performance of a reheat cycle is superior to that of four-bed version without reheat, especially for low heat-source temperature. For low heat-source temperature (55–65°C) both COP and cooling capacity of the reheat cycle with optimization were raised significantly compared to the high heat-source temperature (70–80°C).  相似文献   

20.
The integration of an aqua‐ammonia inlet air‐cooling scheme to a cooled gas turbine‐based combined cycle has been analyzed. The heat energy of the exhaust gas prior to the exit of the heat recovery steam generator has been chosen to power the inlet air‐cooling system. Dual pressure reheat heat recovery steam generator is chosen as the combined cycle configuration. Air film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor–pressure ratio, compressor inlet temperature, turbine inlet temperature, ambient relative humidity, and ambient temperature on performance parameters of plants has been carried out. It has been observed that vapor absorption inlet air cooling improves the efficiency of gas turbine by upto 7.48% and specific work by more than 18%, respectively. However, on the adoption of this scheme for combined cycles, the plant efficiency has been observed to be adversely affected, although the addition of absorption inlet air cooling results in an increase in plant output by more than 7%. The optimum value of compressor inlet temperature for maximum specific work output has been observed to be 25 °C for the chosen set of conditions. Further reduction of compressor inlet temperature below this optimum value has been observed to adversely affect plant efficiency. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号