首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对Hopfield网络求解TSP问题时出现无效解和收敛性能差的问题,对约束条件能量函数进行改进,构造了一种求解TSP问题的遗传Hopfield神经网络算法,并与经典Hopfield神经网络求解TSP方法进行对比.实验结果表明,本文算法具有更好的整体求解性能.  相似文献   

2.
Hong  Qinghui  Li  Ya  Wang  Xiaoping 《Neural computing & applications》2020,32(12):8175-8185
Neural Computing and Applications - Image restoration (IR) methods based on neural network algorithms have shown great success. However, the hardware circuits that can perform real-time IR task...  相似文献   

3.
In this paper, we present a hill-jump algorithm of the Hopfield neural network for the shortest path problem in communication networks, where the goal is to find the shortest path from a starting node to an ending node. The method is intended to provide a near-optimum parallel algorithm for solving the shortest path problem. To do this, first the method uses the Hopfield neural network to get a path. Because the neural network always falls into a local minimum, the found path is usually not a shortest path. To search the shortest path, the method then helps the neural network jump from local minima of energy function by using another neural network built from a part of energy function of the problem. The method is tested through simulating some randomly generated communication networks, with the simulation results showing that the solution found by the proposed method is superior to that of the best existing neural network based algorithm.  相似文献   

4.
基于连续Hopfield网络求解TSP的新方法   总被引:1,自引:0,他引:1  
当连续Hopfield网络及其能量函数同时具有自反馈或不具有自反馈时,称之为一致连续Hopfield网络.在分析了一致连续Hopfield网络能量稳定性的基础上,进一步研究了当网络有自反馈,而其能量函数无自反馈的情况下,网络能量变化的性质,分别给出了使能量函数上升、下降和不变的条件.利用这一理论,可以克服由于梯度下降法所导致的网络能量函数总是下降,从而使网络陷入局部极小值或不可行解的现象.最后在这个理论的基础上我们给出了一种新的求解TSP(traveling salesman problem)的方法,仿真研究表明此方法对于求解TSP问题是很有效的.  相似文献   

5.
6.
基于Hopfield神经网络没有学习规则,不需要训练,也不会自学习,靠Lyapunov函数的设计过程来调节权值的特点,将广义罚函数与Hopfield神经网络的能量函数结合,基于最小平均输出能量准则,构造出更合适的新目标函数,分析讨论了一种实现DS/CDMA盲多用户检测的改进型Hopfield神经网络方法。仿真结果表明,该算法在误码率、抗远近效应方面都有明显的改善。  相似文献   

7.
A shortest path routing algorithm using the Hopfield neural network with a modified Lyapunov function is proposed. The modified version of the Lyapunov energy function for an optimal routing problem is proposed for determining routing order for a source and multiple destinations. The proposed energy function mainly prevents the solution path from having loops and partitions. Experiments are performed on 3000 networks of up to 50 nodes with randomly selected link costs. The performance of the proposed algorithm is compared with several conventional algorithms including Ali and Kamoun's, Park and Choi's, and Ahn and Ramakrishna's algorithms in terms of the route optimality and convergence rate. The results show that the proposed algorithm outperforms conventional methods in all cases of experiments. The proposed algorithm particularly shows significant improvements on the route optimality and convergence rate over conventional algorithms when the size of the network approaches 50 nodes.  相似文献   

8.
分析了免疫算法和Hopfield神经网络的优缺点,提出了一种解决多峰值函数优化问题的混合算法。Hopfield神经网络易于硬件实现,具有简单、快速的优点,但是对初始值具有依赖性以及容易陷入局部极值。免疫算法具有识别多样性的特点,但搜索效率和精度不高。将两算法结合起来,优势互补。首先用免疫算法寻优,然后对所得具有全局多样性的解进行聚类分析,所得聚类中心作为Hopfield神经网络的初始搜索点,最后利用Hopfield神经网络逐个寻优。实验表明,该算法是一种有效的求解多峰函数优化问题的方法,与免疫算法相比,搜索效率和精度都较高。  相似文献   

9.
针对图像特征点匹配算法的运行时间呈指数增长的问题,提出了一种新的匹配算法NHop.该算法通过加入新的网络输入输出函数、点对间差异的度量和启发式选择目标点的方式,对传统的Hopfield神经网络进行了改进.新算法不仅解决了传统Hopfield神经网络运行时间长、能量函数易陷入局部极小点的问题,而且也有效地实现了图像特征点的匹配.实验结果表明,与传统的Hopfield神经网络相比,NHop算法的匹配速度更快、准确率更高,对于图像特征点的匹配效果更好.  相似文献   

10.

The Hopfield network is a form of recurrent artificial neural network. To satisfy demands of artificial neural networks and brain activity, the networks are needed to be modified in different ways. Accordingly, it is the first time that, in our paper, a Hopfield neural network with piecewise constant argument of generalized type and constant delay is considered. To insert both types of the arguments, a multi-compartmental activation function is utilized. For the analysis of the problem, we have applied the results for newly developed differential equations with piecewise constant argument of generalized type beside methods for differential equations and functional differential equations. In the paper, we obtained sufficient conditions for the existence of an equilibrium as well as its global exponential stability. The main instruments of investigation are Lyapunov functionals and linear matrix inequality method. Two examples with simulations are given to illustrate our solutions as well as global exponential stability.

  相似文献   

11.
丁三军  陶兴宇  石祥超  徐蕾 《计算机应用》2015,35(12):3344-3347
针对网络拓扑结构扩充后,原有网络中布置的监测点不易变动的问题,提出一种增量网络监测点的增量选取算法。该算法优化了以网络中顶点的度数作为贪心选择策略求解图的弱顶点覆盖的贪心算法,从而得到更少顶点的近似解。在计算增量网络监测点集时,该算法只利用新增网络拓扑得出新增网络的监测点集,求得的增量监测点可直接加入到原网监测点集合中得到新的全网监测点集,降低重新布置全网监测点的成本。实验结果表明,增量算法得到的全网监测点集与在全新的网络中重新计算得到的全网监测点集的顶点数基本相同,可有效应用于实际的网络监测点部署。  相似文献   

12.
A higher order version of the Hopfield neural network is presented which will perform a simple vector quantisation or clustering function. This model requires no penalty terms to impose constraints in the Hopfield energy, in contrast to the usual one where the energy involves only terms quadratic in the state vector. The energy function is shown to have no local minima within the unit hypercube of the state vector so the network only converges to valid final states. Optimisation trials show that the network can consistently find optimal clusterings for small, trial problems and near optimal ones for a large data set consisting of the intensity values from a digitised, grey- level image.  相似文献   

13.
Wang RL  Tang Z  Cao QP 《Neural computation》2003,15(7):1605-1619
In this article, we present a solution to the maximum clique problem using a gradient-ascent learning algorithm of the Hopfield neural network. This method provides a near-optimum parallel algorithm for finding a maximum clique. To do this, we use the Hopfield neural network to generate a near-maximum clique and then modify weights in a gradient-ascent direction to allow the network to escape from the state of near-maximum clique to maximum clique or better. The proposed parallel algorithm is tested on two types of random graphs and some benchmark graphs from the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS). The simulation results show that the proposed learning algorithm can find good solutions in reasonable computation time.  相似文献   

14.
目前大多数的图像加密算法直接将明文图像加密成无视觉意义的密文图像,而这类密文图像在传输过程中容易被黑客发现从而受到各种攻击。针对上述问题,结合Hopfield混沌神经网络与压缩感知技术提出了一种具有视觉意义的图像加密算法。首先,利用二维离散小波变换对明文图像进行稀疏化;其次,通过压缩感知对经过阈值处理的稀疏矩阵进行加密和测量;然后,在量化的中间密文图像中加入随机数并进行Hilbert置乱和扩散操作;最后,将生成的类噪声密文图像通过最低有效位(LSB)替换来嵌入到载体图像中的Alpha通道以生成具有视觉意义的隐写图像。与现有的可视化图像加密算法相比,所提算法展现出非常好的视觉安全性、解密质量以及鲁棒性,表明其具有广泛的应用场景。  相似文献   

15.
We present a gradient ascent learning method of the Hopfield neural network for bipartite subgraph problem. The method is intended to provide a near-optimum parallel algorithm for solving the bipartite subgraph problem. To do this we use the Hopfield neural network to get a near-maximum bipartite subgraph, and increase the energy by modifying weights in a gradient ascent direction of the energy to help the network escape from the state of the near-maximum bipartite subgraph to the state of the maximum bipartite subgraph or better one. A large number of instances are simulated to verify the proposed method with the simulation results showing that the solution quality is superior to that of best existing parallel algorithm. We also test the learning method on total coloring problem. The simulation results show that our method finds optimal solution in every test graph.  相似文献   

16.
针对基于Hopfield神经网络的最大频繁项集挖掘(HNNMFI)算法存在的挖掘结果不准确的问题,提出基于电流阈值自适应忆阻器(TEAM)模型的Hopfield神经网络的改进关联规则挖掘算法。首先,使用TEAM模型设计实现突触,利用阈值忆阻器的忆阻值随方波电压连续变化的能力来设定和更新突触权值,自适应关联规则挖掘算法的输入。其次,改进原算法的能量函数以对齐标准能量函数,并用忆阻值表示权值,放大权值和偏置。最后,设计由最大频繁项集生成关联规则的算法。使用10组大小在30以内的随机事务集进行1000次仿真实验,实验结果表明,与HNNMFI算法相比,所提算法在关联挖掘结果准确率上提高33.9个百分点以上,说明忆阻器能够有效提高Hopfield神经网络在关联规则挖掘中的结果准确率。  相似文献   

17.
The hysteretic Hopfield neural network   总被引:4,自引:0,他引:4  
A new neuron activation function based on a property found in physical systems-hysteresis-is proposed. We incorporate this neuron activation in a fully connected dynamical system to form the hysteretic Hopfield neural network (HHNN). We then present an analog implementation of this architecture and its associated dynamical equation and energy function. We proceed to prove Lyapunov stability for this new model, and then solve a combinatorial optimization problem (i.e., the N-queen problem) using this network. We demonstrate the advantages of hysteresis by showing increased frequency of convergence to a solution, when the parameters associated with the activation function are varied.  相似文献   

18.
19.
改进的无线传感网混沌Hopfield盲检测算法   总被引:2,自引:0,他引:2  
在密集部署的无线传感器网络中,相邻传感器的信号可能高度相关。在无线传感网传输模型分簇的基础上,针对Hopfield神经网络极易陷入局部最优解、收敛速度慢等缺陷,利用混沌序列的遍历性和类随机性,提出一种改进的混沌Hopfield盲检测算法解决无线传感网簇内传感器信号盲检测问题。算法的思想是:利用混沌映射产生初始发送序列,并且在算法出现早熟收敛时进行小幅度的混沌扰动,借此降低算法的误码率。仿真结果表明,改进的混沌Hopfield神经网络算法所需数据量极短,从而成功实现簇内簇首传感器信号盲检测。  相似文献   

20.
This paper presents a hybrid efficient genetic algorithm (EGA) for the stochastic competitive Hopfield (SCH) neural network, which is named SCH–EGA. This approach aims to tackle the frequency assignment problem (FAP). The objective of the FAP in satellite communication system is to minimize the co-channel interference between satellite communication systems by rearranging the frequency assignment so that they can accommodate increasing demands. Our hybrid algorithm involves a stochastic competitive Hopfield neural network (SCHNN) which manages the problem constraints, when a genetic algorithm searches for high quality solutions with the minimum possible cost. Our hybrid algorithm, reflecting a special type of algorithm hybrid thought, owns good adaptability which cannot only deal with the FAP, but also cope with other problems including the clustering, classification, and the maximum clique problem, etc. In this paper, we first propose five optimal strategies to build an efficient genetic algorithm. Then we explore three hybridizations between SCHNN and EGA to discover the best hybrid algorithm. We believe that the comparison can also be helpful for hybridizations between neural networks and other evolutionary algorithms such as the particle swarm optimization algorithm, the artificial bee colony algorithm, etc. In the experiments, our hybrid algorithm obtains better or comparable performance than other algorithms on 5 benchmark problems and 12 large problems randomly generated. Finally, we show that our hybrid algorithm can obtain good results with a small size population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号