首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
This study investigated the microbial community of an anaerobic sequencing batch reactor (ASBR) operating at mesophilic temperature under varying hydraulic retention times (HRTs) for evaluating optimal hydrogen production conditions, using palm oil mill effluent (POME) as substrate. POME sludge enriched by heat treatment with hydrogen-producing bacteria was used as inoculum and acclimated with the POME. The microbial community was determined by first isolating cultivable bacteria at each operating HRT and then using polymerase chain reaction (PCR). The PCR products were sequenced and sequence identification was performed using the BLAST algorithm and Genbank database. The findings revealed that about 50% of the isolates present were members of the genus Streptococcus, about 30% were Lactobacillus species and around 20% were identified as species of genus Clostridium. Scanning electron microscopy (SEM) analysis also confirmed the presence of spherical and rod-shaped microbial morphologies in the sludge samples of bioreactor during prolonged cultivation.  相似文献   

3.
The feasibility of hydrogen generation from palm oil mill effluent (POME), a high strength wastewater with high solid content, was evaluated in an anaerobic sequencing batch reactor (ASBR) using enriched mixed microflora, under mesophilic digestion process at 37 °C. Four different hydraulic retention times (HRT), ranging from 96 h to 36 h at constant cycle length of 24 h and various organic loading rate (OLR) concentrations were tested to evaluate hydrogen productivity and operational stability of ASBR. The results showed higher system efficiency was achieved at HRT of 72 h with maximum hydrogen production rate of 6.7 LH2/L/d and hydrogen yield of 0.34 LH2/g CODfeeding, while in longer and shorter HRTs, hydrogen productivity decreased. Organic matter removal efficiency was affected by HRT; accordingly, total and soluble COD removal reached more than 37% and 50%, respectively. Solid retention time (SRT) of 4-19 days was achieved at these wide ranges of HRTs. Butyrate was found to be the dominant metabolite in all HRTs. Low concentration of volatile fatty acid (VFA) confirmed the state of stability and efficiency of sequential batch mode operation was achieved in ASBR. Results also suggest that ASBR has the potential to offer high digestion rate and good stability of operation for POME treatment.  相似文献   

4.
Clostridium sp. LS2 was immobilised by entrapment in polyethylene glycol (PEG) gel beads to improve the biohydrogen production rate from palm oil mill effluent (POME). We sought to explore and optimise the hydrogen production capability of the immobilised cells by studying the conditions for cell immobilisation, including PEG concentration, cell loading and curing times, as well as the effects of temperature and K2HPO4 (500–2000 mg/L), NiCl2 (0.1–5.0 mg/L), FeCl2 (100–400 mg/L) MgSO4 (50–200 mg/L) concentrations on hydrogen production rate. The results showed that by optimising the PEG concentration (10% w/v), initial biomass (2.2 g dry weight), curing time (80 min) and temperature (37 °C), as well as the concentrations of K2HPO4 (2000 mg/L), NiCl2 (1 mg/L), FeCl2 (300 mg/L) and MgSO4 (100 mg/L), a maximum hydrogen production rate of 7.3 L/l ‐POME/day and a yield of 0.31 L H2/g chemical oxygen demand were obtained during continuous operation. We believe that this process may be potentially expanded for sustained and large‐scale hydrogen production. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The pilot-scale of two-stage thermophilic (55 °C) for biohythane production from palm oil mill effluent (POME) was operated at hydraulic retention time (HRT) of 2 days and organic loading rate (OLR) of 27.5 gCOD/L⋅d) for first stage and HRT of 10 days and OLR of 5.5 gCOD/L⋅d for second stage. Biohythane production rate was 1.93 L-gas/L⋅d with biogas containing 11% H2, 37% CO2, and 52% CH4. Recirculation of methane effluent mixed with POME at a ratio of 1:1 can control pH in the first stage at an optimal range of 5.0–6.5. Microbial community in hydrogen stage dominated by Thermoanaerobacterium sp., while methane stage dominated by Methanosarcina sp. The H2/CH4 ratio of biohythane was 0.13–0.18 which suitable for vehicle fuel. Biohythane production from POME could be promising cleaner biofuel with flexible and controllable H2/CH4 ratio.  相似文献   

6.
Ozone pretreatment of palm oil mill effluent (POME) was employed to improve sustrate biodegradability prior to biological H2 production. The H2 production was conducted at varing pHs from 4.0 to 6.0 to examine the impact of pH on the H2 mesophilic production (37 °C). The optimal pH for H2 production was 6.0 for both raw and ozonated POME. The POME concentrations were greatly influenced the yields and rates of H2 production. At the optimal pH, the maximum H2 production yield of 182 ± 7.2 mL.g−1 COD (7.96 mmoL.g−1 COD) was achieved at the ozonated POME concentration of 30,000 mg COD.L−1. The maximum H2 production rate (Rmax) of 43.1 ± 2.5 mL.h−1 was obtained at the ozonated POME concentration of 25,000 mg COD.L−1. The highest total COD removal was 44% at of 15,000 mg COD.L−1 ozonated POME. Acetic and butyric acids were dominant products during H2 fermentation and tended to increase with the increased POME concentrations. Ozonation as a pretreatment process showed significant enhancement of the POME biodegradability , and subsequently improved the H2 production H2.  相似文献   

7.
Enhancement of biological H2 production efficiency with pre-ozonation process of palm oil mill effluent (POME) prior to thermophilic dark fermentation (55 °C) was investigated. H2 fermentation experiments were conducted using varying concentrations of raw and ozonated POME. Results revealed that H2 can be produced from both raw and ozonated POME under thermophilic fermentation. Maximum H2 production yield of 77 mL.g−1CODremoved was obtained from ozonated POME, which was higher than that of 51 mL·g−1 CODremoved obtained from raw POME at the highest concentration of 35,000 mg COD.L−1. Meanwhile, the specific H2 production rate (R'max) of 1.9 and 1.5 mL·h−1·g−1 TVS were observed in raw and ozonated POME at the concentration of 25,000 mg COD.L−1, respectively. The main metabolic products during POME fermentation were acetic and butyric acids and trace amount of valeric acid. Propionic acid and ethanol have contributed, which could be reduced H2 production in all batch experiments for both POME. The highest efficiency of total and soluble COD removal of 24 and 25% was obtained from the raw POME, and those of 19 and 25% was obtained from the ozonated POME. The present study demonstrates that the POME loading was greatly influenced on the H2 production yields and rates. The comparative results showed that the ozonated POME gave higher H2 yields than the raw POME. Thus, demonstrating that the ozonation process significantly improved the POME biodegradability, which is able to enhance H2 production yields. However, the ozone pre-treatment was not improved in the specific H2 production rates.  相似文献   

8.
In the present study, a new mesophilic bacterial strain, identified as Bacillus anthracis strain PUNAJAN 1 was isolated from palm oil mill effluent (POME) sludge, and tested for its hydrogen production ability. Effect of physico-chemical factors such as temperature, initial pH, nitrogen source and carbon sources were investigated in order to determine the optimal conditions for hydrogen production. The maximum hydrogen yield of 2.42 mol H2/mol mannose was obtained at 35 °C and initial pH of 6.5. Yeast and mannose were used as the main carbon and nitrogen sources respectively in the course of the hydrogen production. Apart from synthetic substrate, specific hydrogen production potentials of the strain using POME was calculated and found to be 236 ml H2/g chemical oxygen demand (COD). The findings of this study demonstrate that the indigenous strain PUNAJAN 1 could be a potential candidate for hydrogen using POME as substrate.  相似文献   

9.
Thermoanaerobacterium-rich sludge was used for hydrogen production and phenol removal from palm oil mill effluent (POME) in the presence of phenol concentration of 100–1000 mg/L. Thermoanaerobacterium-rich sludge yielded the most hydrogen of 4.2 L H2/L-POME with 65% phenol removal efficiency at 400 mg/L phenol. Butyric acid and acetic acid were the main metabolites. The effects of oil palm ash, NH4NO3 and iron concentration (Fe2+) on hydrogen production and phenol removal efficiency from POME by Thermoanaerobacterium-rich sludge was investigated using response surface methodology (RSM). The RSM results indicated that the presence of 0.2 g Fe2+/L, 0.3 g/L NH4NO3 and 20 g/L oil palm ash in POME could improved phenol removal efficiency, with predicted hydrogen production and phenol removal efficiency of 3.45 L H2/L-POME and 93%, respectively. In a confirmation experiment under optimized conditions highly reproducible results were obtained, with hydrogen production and phenol removal efficiency of 3.43 ± 0.12 L H2/L-POME and 92 ± 1.5%, respectively. Simultaneous hydrogen production and phenol removal efficiency in continuous stirred tank reactor at hydraulic retention time (HRT) of 1 and 2 days were 4.0 L H2/L-POME with 85% and 4.2 L H2/L-POME with 92%, respectively. Phenol degrading Thermoanaerobacterium-rich sludge comprised of Thermoanaerobacterium thermosaccharolyticum, Thermoanaerobacterium aciditolerans, Desulfotomaculum sp., Bacillus coagulans and Clostridium uzonii. Phenol degrading Thermoanaerobacterium-rich sludge has great potential to harvest hydrogen from phenol-containing wastewater.  相似文献   

10.
This study aims to analyse the life-cycle assessment of biohydrogen production from palm oil mill effluent (POME) in a pilot-scale up-flow anaerobic sludge blanket fixed-film reactor. The SimaPro LCA software and ReCiPe 2016 impact assessment method were used. Electricity usage was found to be a significant source of environmental impacts, with 50–98% of the total impacts. Furthermore, an improvement analysis was conducted, resulted in a reduction in all impacts, especially global warming impact with 77% reduction from 818 to 189 kg CO2-eq per kg biohydrogen. While shifting the pilot reactor to Sarawak may further lessen the impact to 142 kg CO2-eq due to cleaner grid in that region. Besides, if the environmental burden avoided due to usage of POME is considered, the global warming impact can be further reduced to 54.9 kg CO2-eq. Thus, the pilot reactor has huge potential, especially in utilizing waste to produce bioenergy.  相似文献   

11.
Methane (CH4) production from palm oil mill effluent (POME) pre-treated by ozonation was conducted under mesophilic (37 °C) condition. The results demonstrated that methane can be produced from both non-ozonated and ozonated POME at a concentration range of 3,000 to 15,000 mg COD L−1. Methane yield rised 54% when POME was pre-treated by ozonation at POME concentration of 15,000 mg COD L−1. The methane yield increased the POME concentration was increased. At POME above 15,000 mg COD L−1, the methane yield was dropped dramatically. The methane production rates (Rmax) and yields exerted similar trend regarding the POME concentration. Accumulation of volatile fatty acids in the reactor posed the drop of methane production. Ozonation pretreatment process of POME can improve the biodegradability of the complex organic matter in POME and enhanced methane yield and rate at POME concentration range of 3,000–15,000 mg COD L−1.  相似文献   

12.
13.
The feasibility of thermophilic biomethane production from acidified palm oil mill effluent (POME) was assessed in a 5 L anaerobic sequencing batch reactor (ASBR). The effects of various hydraulic retention time (HRT) (10-1 d) on methane production performance and the stability of ASBR in treating acidified POME were evaluated herein. It was found that the highest methane productivity of 5.65 L CH4/L/d could be attained at HRT of 2 d. However, the removal of chemical oxygen demand (COD) and volatile fatty acid (VFA) at this HRT is rather low (65-62%) hence making it inefficient to operate at HRT 2 d since most of the contaminants remained in the liquid streams. Thus the most recommended HRT was 3 d with maximum methane productivity of 3.96 L CH4/L/d with corresponding methane yield of 260.3 L CH4/kgCODremoved. The COD removal efficiency at 3 d HRT was 71%, and the VFA consumption was more than 80%. The correlation of total VFA: total alkalinity (TVFA: TA) at HRT of 3 d was found to be 0.1. This recommended HRT of 3 is equally shorter than any previously reported application of POME as a substrate for thermophilic biomethane.  相似文献   

14.
A start-up study of lab-scale up-flow anaerobic sludge blanket fixed-film reactor (UASFF) was conducted to produce biohydrogen from palm oil mill effluent (POME). The reactor was fed with POME at different hydraulic retention time (HRT) and organic loading rate (OLR) to obtain the optimum fermentation time for maximum hydrogen yield (HY). The results showed the HY, volumetric hydrogen production rate (VHPR), and COD removal of 0.5–1.1 L H2/g CODconsumed, 1.98–4.1 L H2 L?1 day?1, and 33.4–38.5%, respectively. The characteristic study on POME particles was analyzed by particle size distribution (PSD), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX). The microbial Shannon and Simpson diversity indices and Principal Component Analysis assessed the alpha and beta diversity, respectively. The results indicated the change of bacterial community diversity over the operation, in which Clostridium sensu stricto 1 and Lactobacillus species were contributed to hydrogen fermentation.  相似文献   

15.
A hydrogen producer was successfully isolated from anaerobic digested palm oil mill effluent (POME) sludge. The strain, designated as Clostridium butyricum EB6, efficiently produced hydrogen concurrently with cell growth. A controlled study was done on a synthetic medium at an initial pH value of 6.0 with 10 g/L glucose with the maximum hydrogen production at 948 mL H2/L-medium and the volumetric hydrogen production rate at 172 mL H2/L-medium/h. The supplementation of yeast extract was shown to have a significant effect with a maximum hydrogen production of 992 mL H2/L-medium at 4 g/L of yeast extract added. The effect of pH on hydrogen production from POME was investigated. Experimental results showed that the optimum hydrogen production ability occurred at pH 5.5. The maximum hydrogen production and maximum volumetric hydrogen production rate were at 3195 mL H2/L-medium and 1034 mL H2/L-medium/h, respectively. The hydrogen content in the biogas produced was in the range of 60–70%.  相似文献   

16.
The biohydrogen (H2) production in batch experiments under varying concentrations of raw and ozonated palm oil mill effluent (POME) of 5000–30,000 mg COD.L−1, at initial pH 6, under mesophilic (37 °C), thermophilic (55 °C) and extreme-thermophilic (70 °C) conditions. Effects of ozone pretreatment, substrate concentration and fermentation temperature on H2 production using mesophilic seed sludge was undertaken. The results demonstrated that H2 can be produced from both raw and ozonated POME, and the amounts of H2 production were directly increased as the POME concentrations were increased. H2 was successfully produced under the mesophilic fermentation of ozonated POME, with maximum H2 yield, and specific H2 production rate of 182 mL.g−1 CODremoved (30,000 mg COD.L−1) and 6.2 mL.h−1.g−1 TVS (25,000 mg COD.L−1), respectively. Thus, indicating that the ozone pretreatment could elevate on the biodegradability of major constituents of the POME, which significantly enhanced yields and rates of the H2 production. H2 production was not achieved under the thermophilic and extreme-thermophilic fermentation. In both fermentation temperatures with ozonated POME, the maximum H2 yield was 62 mL.g−1 CODremoved (30,000 mg COD.L−1) and 63 mL.g−1 CODremoved (30,000 mg COD.L−1), respectively. The highest efficiency of total and soluble COD removal was obtained at 44 and 37%, respectively following the mesophilic fermentation, of 24 and 25%, respectively under the thermophilic fermentation, of 32 and 20%, respectively under the extreme-thermophilic fermentation. The production of volatile fatty acids increased with an increased fermentation time and temperature in both raw and ozonated POME under all three fermentation temperatures. The accumulation of volatile fatty acids in the reactor content were mostly acetic and butyric acids. H2 fermentation under the mesophilic condition of 37 °C was the better selection than that of the thermophilic and extreme-thermophilic fermentation.  相似文献   

17.
Thermotolerant consortia were obtained by heat-shock treatment on seed sludge from palm oil mill. Effect of the initial pH (4.5–6.5) on fermentative hydrogen production palm oil mill effluent (POME) showed the optimum pH at 6.0, with the maximum hydrogen production potential of 702.52 mL/L-POME, production rate of 74.54 mL/L/h. Nutrients optimization was investigated by response surface methodology with central composite design (CCD). The optimum nutrients contained 0.25 g urea/L, 0.02 g Na2HPO4/L and 0.36 g FeSO4·7H2O/L, giving the predicted value of hydrogen production of 1075 mL/L-POME. Validation experiment revealed the actual hydrogen production of 968 mL/L-POME. Studies on the effect of temperature (25–55 °C) revealed that the maximum hydrogen production potential (985.3 mL/L-POME), hydrogen production rate (75.99 mL/L/h) and hydrogen yield (27.09 mL/g COD) were achieved at 55, 45 and 37 °C, respectively. Corresponding microbial community determined by the DGGE profile demonstrated that Clostridium spp. was the dominant species. Clostridium paraputrificum was the only dominant bacterium presented in all temperatures tested, indicating that the strain was thermotolerant.  相似文献   

18.
19.
Palm oil mill effluent (POME), a wastewater from the most significant agricultural industry in Southeast Asia is produced in tremendous amounts that requires proper management to mitigate its negative environmental effects. The feasibility of treating POME in a closed dark fermentation (DF) system to replace the existing inefficient open ponding treatment has been thoroughly investigated. Theoretically, the maximum H2 yield obtained by DF process is 4 molH2/molglucose, however, it is not achievable due to the nature of POME. In this study, several enhancement methods for increasing H2 yield and DF process stability were discussed. An apprehension into the different pre-treatment methods on POME including physicochemical, chemical and biological and their effects on the characteristics of POME including pH, temperature, sugar content, solid content, viscosity, nutrients and by-product toxicity on the biohydrogen production and effluent quality were reviewed. Various bioreactor designs were used for biohydrogen from POME, the modifications applied on the system design to increase the stability and productivity of POME treatment have been examined. Moreover, higher biohydrogen productivity could be obtained with the addition of nanoparticle nutrients and introducing genetically modified H2-producing bacteria. Finally, further investigation in the future shall focus on the development of a more inclusive and efficient POME treatment via DF process that favours biohydrogen production, environmental benign and economically viable.  相似文献   

20.
By means of biorefinery, biogas production through anaerobic digestion is one of the most common treatments of wastewater in the palm oil industry. After biogas production, the treated palm oil mill effluent (POME) is generally discharged into the environment. However, certain level of hazardous compounds still exists in the treated wastewater, which can lead to the pollution of water bodies. In this study, we have investigated the dynamics of volatile organic acids dwelling in consecutive POME treatment lagoons as well as identified, and categorized, microbial species responsible for the treatment process. Bacteria and methanogens, both hydrogenotrophic and acetoclastic, related to methane production were identified using mcrA and 16S rRNA genes specific primers. Two hydrogenotrophic methanogens, Methanoculleus marisnigri and Methanoculleus chikugoensis, were found abundant in accordance with high formate concentration throughout the process of anaerobic digestion. This study has also isolated eight consortia of microbes that yielded different methane productions by utilizing formate as the substrate in the synthetic medium. The consortia of a group, containing M. marisnigri, M. chikugoensis, uncultured bacteria, Aminobacterium sp., and Ruminobacillus xylanolyticum, produced the highest methane yield of 259 mL/g COD after 25 days of incubation in the laboratory. The findings from this study are contributing to optimize and increase biogas production in POME, which will allow higher efficiency in palm oil mill wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号