首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asphalt binder viscosity is of great importance during the production process of hot mix asphalt mixture as typically asphalt plants will store binders between 149 °C and 177 °C. SHRP guidelines state that asphalt binder viscosity must not exceed 3 Pa s. Therefore, given the documented increases in asphalt viscosity when modified with crumb rubber modifier (CRM) it is necessary to produce asphalt binder that fulfills the SHRP criteria while not exceeding plant mixing and storing requirements. This paper reports the results of an investigation of the importance of CRM properties on viscosity of CRM binder. Two binder sources were modified at four concentration levels using four different crumb rubber sources; the viscosities of the produced binders were evaluated by AASHTO T 316. Crumb rubber properties were evaluated by elemental analysis using a scanning electron microscope (SEM) and by determination of glass transition temperature (Tg) using a differential scanning calorimeter (DSC). In general, results indicate that processing procedure and tire type plays an important role in the determination of CRM binder viscosity.  相似文献   

2.
To minimize waste tires pollution and improve properties of asphalt mixtures, properties of recycled tire rubber modified asphalt mixtures using dry process are studied in laboratory. Tests of three types asphalt mixtures containing different rubber content (1%, 2% and 3% by weight of total mix) and a control mixture without rubber were conducted. Based on results of rutting tests (60 °C), indirect tensile tests (−10 °C) and variance analysis, the addition of recycled tire rubber in asphalt mixtures using dry process could improve engineering properties of asphalt mixtures, and the rubber content has a significant effect on the performance of resistance to permanent deformation at high temperature and cracking at low temperature.  相似文献   

3.
This research investigated the feasibility using asphalt rubber (AR), produced by blending ground tire rubber (GTR) with an asphalt, as a binder for stone matrix asphalt (SMA). Two different sizes of GTR produced in Taiwan were used. The potential performance of AR–SMA mixtures was also evaluated. The results of this study showed that it was not feasible to produce a suitable SMA mixture using an asphalt rubber made by blending an AC-20 with 30% coarse GTR with a maximum size of 0.85 mm. However, SMA mixtures meeting typical volumetric requirements for SMA could be produced using an asphalt rubber containing 20% of a fine GTR with a maximum size of 0.6 mm. No fiber was needed to prevent drain-down when this asphalt rubber was used. The AR–SMA mixtures were not significantly different from the conventional SMA mixtures in terms of moisture susceptibility from the results of AASHTO T283 tests. The results of the wheel tracking tests at 60 °C show that rutting resistance of AR–SMA mixtures was better than that of the conventional SMA mixtures.  相似文献   

4.
This study investigates the effect of cement additive on some properties of asphalt binder using Superpave testing methods. Six cement-to-asphalt (C/A) ratios were considered in the study: 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30 by volume of asphalt binder. The experimental tests that were conducted in the study included the Superpave rotational viscosity (RV) test and the dynamic shear rheometer (DSR) test. The RV test was conducted at the Superpave-specified high temperature of 135 °C that represents the average mixing and laydown temperature, and at seven different rotational speeds of 5, 10, 20, 30, 50, 60, and 100 rpm. On the other hand, the DSR test was conducted at four test temperatures of 58, 64, 70, and 76 °C; one lower and two higher than the Superpave high performance grade (PG) temperature of the asphalt binder used in the study (PG 64). The loading frequency used in the DSR test was 10 rad/s (1.59 Hz) as specified by the Superpave system. Results of the study showed that the addition of Portland cement to asphalt binders increased the rotational viscosity (RV) of asphalt binders at 135 °C and different rotational speeds. The C/A ratio of 0.15 was found to be the optimum ratio that achieved a balanced increase in the rotational viscosity and the value of the DSR G*/sin δ rutting parameter of asphalt binders. The C/A ratio had insignificant effects on the Newtonian behavior, the phase angle (δ), and the elastic behavior of asphalt binders. The increase in C/A ratio increased the stiffness of asphalt binders represented by the complex shear modulus (G*) value. The increase in the C/A ratio improved the rutting parameter, G*/sin δ value, at all temperatures. The increase in C/A ratio improved the Superpave high PG temperature (the high temperature at which the asphalt binder passed the Superpave criteria for G*/sin δ value). It was also shown that the best function that described the relationship between each of RV, G*, and G*/sin δ and the C/A ratio was the exponential function with high coefficient of determination (R2).  相似文献   

5.
Accurately predicting the viscous properties of crumb rubber modified (CRM) binders has proven difficult, especially as these properties tend to vary with changing crumb rubber concentrations and temperatures. This study explores the utilization of the statistical regression and neural network (NN) approaches in predicting the viscosity values of CRM binder at various temperatures (135 °C and greater). A total of 53 CRM binder combinations were prepared from two different rubber types (ambient and cryogenic), three different binder sources, four rubber concentrations (0%, 5%, 10%, and 15%), and five crumb rubber gradations (ADOT, SCDOT, 0.18 mm, 0.425 mm, and 0.85 mm). The results indicated that the regression model is easy to use and can be used for viscosity prediction, similarly NN-based models also provided accurate for predictions for the viscosity values of CRM binders regardless of rubber type and can easily be implemented in a spreadsheet. In addition, the developed NN model can be used to predict viscosity values of other types of CRM binders efficiently. Furthermore, the sensitivity analysis of input variables indicated that the changes of viscosity are significant as the changes of asphalt binder grade, test temperature, and rubber content. The results also show that these three independent variables are the most important factors in the developed NN models in comparison with other variables.  相似文献   

6.
The application of crumb rubber in asphalt mixtures is intended to improve the binder properties by reducing the binder’s inherent temperature susceptibility. This research investigated the interaction effects of CRM binders as a function of various blending treatments in the laboratory. For this study, CRM binders were produced using seven blending times (5, 30, 60, 90, 120, 240, and 480 min), three blending temperatures (177, 200, and 223 °C), and four rubber contents (5%, 10%, 15%, and 20% by weight of asphalt binder). The results from this study showed that (1) The interaction time and interaction temperature for CRM binders were observed to have significant effect on the binder properties; (2) The longer time and higher temperature for interaction of CRM binders resulted in an increase in the high failure temperature and the viscosity. This is thought to be due to the increase in the rubber mass through binder absorption. However, this study found that the control binder of PG 64-22 had little change of the binder properties as a function of interaction conditions; (3) The CRM percentage influence is statistically significant on the viscosity and G*/sin δ values. Also, the asphalt binder with higher CRM percentage showed a higher large molecular size (LMS) value, and the increase in CRM percentage is considered to result in the additional loss of the low molecular weight in the asphalt binder to the CRM.  相似文献   

7.
This research was aimed to predict the number of cycles that cause fracture of hot-mix asphalt (HMA) based on the number of cycles at which the slope of accumulated strain switched from decreasing to increasing mode. In addition, the effect of aggregate gradation and temperature on fatigue behaviors of HMA were evaluated.HMA specimens were prepared at optimum asphalt content using the Marshall mix design procedure. The specimens were prepared using crushed limestone aggregate, 60/70 penetration asphalt, and three different aggregate gradations with maximum nominal aggregate size of 12.5, 19.0, and 25.0 mm. Five magnitudes of load (1.5, 2.0, 2.5, 3.0, and 3.5 kN) were evaluated for their effect on fatigue behavior.Constant stress fatigue tests were performed using the Universal Testing Machine (UTM) at 25 °C. Other temperatures (10, 45, and 60 °C) were evaluated at a load of 3.5 kN.The tests results indicated that the slope of accumulated strain continued to decrease until the number of loading cycles approached 44% of the number of cycles that caused fracture of the HMA. Also, the initial stiffness of asphalt mixtures was found to increase as the magnitude of the load applied increased and as the aggregate gradation maximum nominal size decreased.  相似文献   

8.
Both the RTFO (rolling-thin film oven) aging of asphalt binders and the STOA (short-term oven aging) of asphalt mixtures are designed to simulate aging during the construction of hot mix asphalt (HMA) pavements. Many studies have been conducted evaluating the aging effects on asphalt binders since their properties can be easily measured using many conventional tests, such as rotational viscometer, DSR (dynamic shear rheometer), and BBR (bending beam rheometer). However, studies on asphalt mixture aging have been limited to mechanical properties such as strength and fatigue characteristics because considerable effort is required to identify the aging of the asphalt binder in a mixture. This study evaluated the effects of short-term oven aging on asphalt mixtures using the GPC (gel-permeation chromatography) procedure. Nine asphalt mixtures, using three different binder sources, were prepared and five short-term aging methods were used to evaluate these mixes. For comparison, the RTFO aging was also conducted for nine asphalt binders. The aging of a binder within asphalt mixtures, including polymer-modified mixtures, could be identified under various short-term aging conditions. Statistical analysis of the GPC test results indicated that two commonly used short-term aging methods in the laboratory, a 154 °C oven aging for 2 h and a 135 °C oven aging for 4 h, are not significantly different, based on the increase in the large molecular size (LMS) ratios. The RTFO aging method was found to have less effect on binder aging than the short-term oven aging methods of asphalt mixtures.  相似文献   

9.
In this study, a pozzolanic binder containing lime and a common thermally activated kaolinitic clay, at 750 °C, was formulated. The chemical, mineralogical and pozzolanic properties of raw materials were determined. The percentage of lime in the binder varies between 20% and 30%. The binder was used as a stabilizer in compressed lateritic soil in which water–solid (laterite and binder) and laterite–binder ratios vary, respectively, from 0.12 to 0.20 and 4 to 9. Sodium hydroxide (NaOH) was added as a chemical activator in the mixture. The NaOH–binder ratio varies from 0.02 to 0.04. The average effect of each component of the mixture on compressive strength, water absorption and apparent density of compressed laterite after 7 or 28 days of conservation at 40 ± 1 °C in an atmosphere saturated with water vapour was evaluated in a screening design of the “design in graeco – latin squares” type. It was observed that water–solid and laterite–binder ratios are the factors that influence more the properties of the products. Compressive strength increases up to a water–solid ratio of 0.16 then decreases for higher ratios. Compressive strength decreases with the increase of laterite–binder ratio. Water absorption decreases with the increase of water–solid ratio up to 0.16 then sharply increases for higher ratios. However, water absorption decreases slightly with the increase in the lime content of the binder and sodium hydroxide–binder ratio. The maximum apparent density is observed at water–solid ratio of 0.16. It increases when sodium hydroxide–binder and laterite–binder ratios increase.  相似文献   

10.
The objective of this study is to review existing literature in the area of nano-modification of asphalt and proceed to apply nano-materials to asphalt to improve the performance. This study integrates literature review, preparation, and characterization of nano-modified asphalt materials. In the experimental testing montmorillonite, nanoclay at 2% and 4% by weight of asphalt was blended in asphalt binder at a high temperature to exfoliate the nanoclay within the asphalt. The asphalt binder was then characterized using the Superpave? rotational viscosity, dynamic shear modulus, and direct tension test. The rotational viscosity results indicate that the addition of the two types of nanoclay, Nanoclay A and Nanoclay B, increased the rotational viscosity by an average of 41% and 112%, respectively, across test temperatures 80, 100, 130, 135, 150 and 175 °C. It was found that the dynamic shear complex modulus (G*) value increases significantly across a range of testing temperatures (from 13 to 70 °C) and loading frequencies (0.01–25 Hz). With 2% Nanoclay A reinforcement in the asphalt binder, the complex shear moduli generally increased by 66% while the 4% Nanoclay A reinforcement in the asphalt binder generally increased the shear complex moduli by 125%. The 2% and 4% Nanoclay B increased the shear complex moduli by 184% and 196%, respectively. In terms of direct tension strength, the use of Nanoclay A and Nanoclay B reduced the strain failure rate of the original binder while the secant or direct tension moduli showed increase with the addition of the nanoclays. In furtherance of this research, nanoclay-modified asphalt is being tested at percentages higher than 4% to underscore the fact that nanoclays may have the potential to reduce rutting and cracking.  相似文献   

11.
The long-term performance of pavement is associated with various factors such as pavement structure, materials, traffic loading, and environmental conditions. Improving the understanding of the fatigue behavior of the specific rubberized warm mix asphalt (WMA) is helpful in recycling the scrap tires and saving energy. This study explores the utilization of the conventional fatigue analysis approach in investigating the fatigue life of rubberized asphalt concrete mixtures containing the WMA additive. The fatigue beams were made with one rubber type (?40 mesh ambient crumb rubber), two aggregate sources, two WMA additives (Asphamin® and Sasobit®), and tested at 20 °C. A total of eight mixtures were performed and 29 fatigue beams were tested in this study. The test results indicated that the addition of crumb rubber and WMA additive not only reduced the mixing and compaction temperatures of rubberized asphalt mixtures offset by crumb rubber but also effectively extended the long-term performance of pavement when compared with conventional asphalt pavement. In addition, the exponential function forms are efficient in achieving the correlations between the dissipated energy and load cycle as well as mixture stiffness and load cycle.  相似文献   

12.
Material characterization from laboratory tests on asphalt concrete or predictions of pavement performance are meaningful only if temperature of the material is well taken into account. This paper discusses an analytical model to predict the transient temperature distribution within asphalt concrete and to determine its thermal properties. The paper also presents the laboratory test program designed to validate the model. Temperature measurements were carried out on a cylindrical specimen at different times after the specimen with a steady-state low temperature (3.5 °C) was placed inside an environmental chamber in a steady-state high temperature (36 °C). The temperature magnitude at different positions and its variation with time was recorded at a sampling rate of 1 min−1. The analytical temperature models based on the classical planar wall and long cylinder were established to approximate the temperature distribution of asphalt concrete specimens with the geometry of a short cylinder or a beam. Thermal diffusivity as a function of thermal conductivity and heat convection is solved from the models, and then back-calculation was conducted to achieve the thermal properties using curve fitting. It was found that the analytical model could predict the measured temperatures reliably. For the materials used in this research, a thermal conductivity of 2.88 W/m °C and diffusivity of 1.42 × 10−6 m2/s were attained from the back-calculation. The time–temperature relationship, as determined from the prediction model, was found to be very sensitive to the geometric size and thermal properties of asphalt concrete.  相似文献   

13.
Crumb rubber concrete (CRC) is made by adding rubber crumbs into conventional concrete. This study undertakes an experimental study on the cubic compressive strength, axial compressive strength, flexural strength and splitting tensile strength of CRC specimens at both ambient temperature 20 °C and low temperature ?25 °C. The flexural stress–strain responses were also recorded. The averaged size of rubber crumbs used in the study is about 1.5 mm. Four levels of rubber contents are investigated, which are 0%, 5%, 10% and 15% by volume, respectively. The mix design aimed at 40 MPa of compressive strength and 100 mm of slump for all the CRC specimens. The results show that CRC increases its magnitude in strengths when temperature decreases, which is similar to the case of conventional concrete, but still exhibits ductility in low temperature. The conclusion from this study is that CRC may be more beneficial in its application in low temperature environments than in ambient temperature environments.  相似文献   

14.
This study was initiated to investigate the aging characteristics of binders due to the reaction with the crumb rubber. For this laboratory study, the crumb rubber modified (CRM) and control binders were aged using an oven aging method. Also, asphalt mixtures with CRM or control binders were made and subjected to short-term and long-term aging treatments. The properties of these aged binders were evaluated using gel permeation chromatography (GPC) test procedures. The results from this study showed that: (1) the higher CRM percentage resulted in the higher large molecular size (LMS) value of asphalt binder under the binder aging conditions, and the rate of increase in the LMS value was found to have a relation to the CRM percentage. The asphalt binders with higher CRM percentages (15% and 20%) had a trend the LMS values decrease after a certain level. This finding is thought to be related to the required time for the rubber to be fully digested; (2) after subjecting to the long-term oven aging, the asphalt mixtures with the control and CRM modified binders were found to have statistically insignificant differences in aging level, measured using the LMS values. The very thin film thickness of binder in asphalt mixture and the aging temperature of 100 °C insufficient to enable a reaction were considered to be the main reasons that no differences were observed from the standpoint of the aging effect.  相似文献   

15.
Eighty pull-out specimens were used to study the effect of temperature ranging from 20 °C to 80 °C in dry environment on bond properties between Glass Fiber Reinforced Polymer (GFRP) bars and concrete. The pullout-test specimens were subjected during 4 and 8 months to high temperatures up to 80 °C and then compared to untreated specimens (20 °C). Experimental results showed no significant reduction on bond strength for temperatures up to 60 °C. However, a maximum of 14% reduction of the bond strength was observed for 80 °C temperature after 8 months of thermal loading. For treated specimens, the coefficient β in the CMR model, which predicts the bond–stress–displacement behavior, seems to be dependant with the temperature.  相似文献   

16.
This study investigates the effects of elevated temperatures on the residual mechanical performance of concrete produced with recycled rubber aggregate (RRA). Four different concrete compositions were prepared: a reference concrete (RC) made with natural coarse aggregate and three concrete mixes with replacement rates of 5%, 10% and 15% of natural fine and coarse aggregate by RRA from used tyres. Specimens were exposed for a period of 1 h to temperatures of 400 °C, 600 °C and 800 °C, after being heated in accordance with ISO 834 time–temperature curve. After cooling down to ambient temperature, the compressive strength and the splitting tensile strength were evaluated and compared with reference values obtained prior to fire exposure. For the replacement rates used in the present experiments, the obtained results show that concrete made with recycled rubber aggregate (CRRA) present a thermal response that is roughly similar to that of RC; in addition, although residual mechanical properties of CRRA are noticeably more affected than those of RC, particularly for higher exposure temperatures, the relative reduction should not prevent it from being used in structural applications.  相似文献   

17.
The paper deals with the cementitious binders produced by blending 60–70% fly ash with fluorogypsum, hydrated lime sludge, with and without Portland cement and chemical activator in different proportions. Data show that strength development of cementitious binders takes place through formation of ettringite, C–S–H and wollastonite compounds. The durability of these binder has been studied by its performance in water and by accelerated aging i.e. alternate wetting and drying as well as by heating and cooling cycles at temperatures in the range 27–50 °C. The results indicate Lawrence of strength of binder with the increasing cyclic studies at different temperatures. The maximum fall in compressive strength was noticed at 50 °C.  相似文献   

18.
Cement manufacture has undergone extensive change in its attempts to rise to the successive challenges posed by society. The hydration of Portland cement is a complex phenomenon that depends on both reagent characteristics and reaction conditions. It is a well-known fact that the curing temperature plays an important role on the hydration kinetics. The present study is the first to be undertaken on the effect of curing temperature on white Portland cement paste hydration over long hydration times (365 days at 20 °C and 124 days at 60 °C). The technique used, 29Si and 27Al NMR spectroscopy, is particularly well adapted to the study of cement hydration. White cement hydration generates a C–S–H gel in which the aluminium taken up forms bridge bonds. After nine days at 60 °C, the degree of reaction expressed in terms of the Al(IV)/Al(VI) ratio nearly doubles the value found after 90 days at 20 °C.  相似文献   

19.
Benefits of adding Tall oil pitch (TOP), Styrene-butadiene-styrene (SBS) and TOP + SBS to AC-10 in variant quantities to AC-10 were investigated. Initial research was done to determine the physical properties of asphalt cement and modifiers.Seven asphalt binder formulations were prepared with 8% of TOP; 8 + 3, 8 + 6 and 8 + 9% of TOP + SBS, respectively; 3, 6 and 9% of SBS by total weight of binder. After that, Marshall samples were prepared by using the modified and unmodified asphalt binders.Additionally, compression strength test were done in different conditions to determine water, heat and frost resistance of all Marshall samples.Fatigue life and plastic deformation tests for Marshall samples (for different asphalt mixtures: modified and unmodified) were carried out using PC controlled repeated load indirect tensile test equipment developed at Suleyman Demirel University by Tigdemir (SDU-Asphalt Tester).The results of investigation indicate that asphalt mixture modified by 8% TOP + 6% SBS gives the best results in the tests that were carried out in this study, so that, this modification increases physical and mechanical properties of asphalt binder.  相似文献   

20.
The concept of warm mix asphalt (WMA) gives a promise for rehabilitating airport pavement to realize quick turnover to traffic after construction, however, laboratory and field data in terms of the performance-related properties are significantly lacking for using WMA in airfield in Japan. To fill this gap, three WMA mixtures (different gradations) were systematically investigated compared with the conventional airfield used hot mix asphalt (HMA) through a series of laboratory tests in terms of wheel tracking test, submerged wheel tracking test, raveling test, static bending and fatigue bending test. These WMA mixtures were made at two production temperatures (30 and 50 °С lower than the normal, respectively) by incorporating a commercially sold additive. Results showed that overall, the WMA mixture with a coarse gradation produced at the temperature 30 °С lower than the normal exhibited a comparable performance compared with the control HMA mixture, and it was further recommended for use in airport pavement rehabilitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号