首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This paper presents results from large-scale four-point bending tests of 12″ X65 seamless pipes with circumferential defects subjected to different levels of internal pressure. The aim of the tests has been to investigate the effect of biaxial loading on the strain capacity of the pipes. The results from the tests show a significant effect of the biaxial loading. For cases without internal pressure, the pipes fail due to local buckling on the compression side of the pipe. Upon application of internal pressure the failure mode shifts to fracture from the defect on the tension side. The failure bending strain levels for these cases were 1.5–2.25%, whereas the local buckling occurred at strain levels in the range of 3.5–4%. The main reason for this appears to be that the biaxial loading increases the crack driving force for a given applied strain level. No significant effect of the biaxial loading on the ductile tearing resistance was observed. The results are of great importance for fracture assessment of pressurised pipelines loaded into the plastic region, as the biaxial loading effect observed is not accounted for in current fracture assessment procedures.  相似文献   

2.
This paper provides effects of reinforcement shape and area on plastic limit loads of branch junctions under internal pressure and in-plane/out-of-plane bending, via detailed three-dimensional finite element limit analysis assuming elastic-perfectly plastic material behaviour. It is found that reinforcement is most effective when (in-plane/out-of-plane) bending is applied to the branch pipe. When bending is applied to the run pipe, reinforcement is less effective when bending is applied to the branch pipe. The reinforcement effect is the least effective for internal pressure.  相似文献   

3.
Demand for long-distance offshore pipelines is steadily increasing. High internal pressure combined with bending/tension, accompanied by large plastic strains, along with the potential flaws in girth welds make the structural integrity of pipelines a formidable challenge. The existing procedures for the fracture assessment of pipelines are based on simplified analytical methods, and these are derived for a load-based approach. Hence, application to surface cracked pipes under large deformation is doubtful. The aim of this paper is to understand and identify various parameters that influence the fracture response of cracks in pipelines under more realistic loading conditions. The evolution of CTOD of a pipeline segment with an external circumferential surface crack is investigated under pure bend loading as well as bending with internal pressure. Detailed 3D elastic–plastic finite element simulations are performed. The effects of crack depth, crack length, radius-to-thickness ratio and material hardening on fracture response are examined. The results show that at moderate levels of CTOD, the allowable moment capacity of the pipe decreases significantly with increase in internal pressure. Further, the variation of CTOD with strain can be well approximated by a simple linear relationship.  相似文献   

4.
Approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the FE results.  相似文献   

5.
Performance of a flange joint is characterised mainly by its ‘strength’ and ‘sealing capability’. A number of analytical and experimental studies have been conducted to study these characteristics under internal pressure loading. However, with the advent of new technological trends for high temperature and pressure applications, an increased demand for analysis is recognized. The effect of steady-state thermal loading makes the problem more complex as it leads to combined application of internal pressure and temperature. The present design codes do not address the effects of temperature on the structural integrity and sealing ability. In addition, the available design solutions do not solve problems of failure of a gasketed flange joint even under bolt up and internal pressure loading conditions. To investigate joint strength and sealing capability under combined internal pressure and different steady-state thermal loading, a 3D nonlinear finite element analysis (FEA) of a gasketed flange joint is carried out and its behaviour is discussed. To determine the safe operating conditions or the actual joint load capacity, the joint is further analyzed for different internal pressures keeping the temperature constant.  相似文献   

6.
Experimental measurements are always affected by some noise and errors caused by inherent inaccuracies and deficiencies of the experimental techniques and measuring devices used. In some fields, such as strain calculations in a dented pipe, the results are very sensitive to the errors. This paper presents a filtering algorithm to remove noise and errors from experimental measurements of radial displacements of a dented pipe. The proposed filter eliminates the errors without harming the measured data. The filtered data can then be used to estimate membrane and bending strains. The method is very effective and easy to use and provides a helpful practical measure for inspection purposes.  相似文献   

7.
The authors have previously proposed plastic limit load solutions for thin-walled branch junctions under internal pressure and in-plane bending, based on finite element (FE) limit loads resulting from three-dimensional (3-D) FE limit analyses using elastic–perfectly plastic materials [Kim YJ, Lee KH, Park CY. Limit loads for thin-walled piping branch junctions under internal pressure and in-plane bending. Int J Press Vessels Piping 2006;83:645–53]. The solutions are valid for ratios of the branch-to-run pipe radius and thickness from 0.4 to 1.0, and for the mean radius-to-thickness ratio of the run pipe from 10.0 to 20.0. Moreover, the solutions considered the case of in-plane bending only on the branch pipe. This paper extends the previous solutions in two aspects. Firstly, plastic limit load solutions are given also for in-plane bending on the run pipe. Secondly, the validity of the proposed solutions is extended to ratios of the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 5.0 to 20.0. Comparisons with FE results show good agreement.  相似文献   

8.
Limit loads can be calculated with the finite element method (FEM) for any component, defect geometry, and loading. FEM suggests that published long crack limit formulae for axial defects under-estimate the burst pressure for internal surface defects in thick pipes while limit loads are not conservative for deep cracks and for pressure loaded crack-faces. Very deep cracks have a residual strength, which is modelled by a global collapse load. These observations are combined to derive new analytical local and global collapse loads. The global collapse loads are close to FEM limit analyses for all crack dimensions.  相似文献   

9.
The first part of this paper provides a review of recent investigations on steel pipes subjected to combined loads. Attention is given to studies involving both numerical and experimental components aimed at quantifying the modified moment resistance of pipes subjected to internal pressure and axial force. The comparison of experimental and finite element results indicate that the nonlinear shell finite element analysis is a reliable tool for predicting moment capacities of pipes. The second part of the paper reports two additional full-scale tests recently conducted at the University of Ottawa aimed at expanding the existing experimental database to pipes subjected to more complex load combinations involving twisting moment and shear (in addition to axial force, internal pressure, and bending). The finite element analysis for both tests is shown to provide excellent predictions of pipe moment capacity. The third part of the paper is a systematic parametric study based on the FEA model verified in previous and present investigations, aimed to assess the ability of pipe sections to attain their modified elastic and/or plastic moment resistance as predicted by analytically derived interaction equations. The parameters investigated are the applied torsion, internal pressure, axial force, and the diameter-to-thickness ratio of the pipe.  相似文献   

10.
Mechanical damage, including dents and cracks to pipes, occurs frequently, mainly caused by operational activities and fabrication errors. Structural assessment of dented pipes with cracks is of importance, but reliability-based assessment is necessary to properly account for the uncertainties invloved. This paper proposes a new methodology for calculating the fracture strength of dented pipes with cracks. Comparisons between the predicted fracture strength based on the presented approach and test results are made and good agreement is observed. A fracture reliability model of dented pipes with cracks is predicted. Fracture reliability analysis of a damaged pipe is performed based on a design example and detailed parameter studies are also conducted. Calibration of the safety factor based on the reliability methods is carried out.  相似文献   

11.
This study concerns the load interaction behaviour of 90° smooth piping elbows with circular cross-section and long straight tangent pipes. The finite element method is used for stress analysis of elbows having a wide range of bend and pipe factors. The main aim of the study is to establish the first yield interaction behaviour when an elbow is subjected to a combination loading of in-plane bending, torsion and internal pressure. The study shows that load interaction is influenced by pipe factor, bend radius and load coupling effect, with thinner elbows being affected to a larger degree.  相似文献   

12.
Leak-rate tests were performed using 114 mm and 165 mm (4 and 6 in) diameter, schedule 80 pipes made of austenitic stainless steel SUS304 and carbon steel STS42. Each pipe contained a through-wall fatigue crack and was mounted on a four-point bending machine of 400 kN maximum loading. Tests were done under a pressure of 7 MPa, with a subcooling temperature. The leak rate was measured by a Venturi flow meter and a differential pressure transducer attached to the pressure vessel. Comparisons of the effect of pipe material, diameter and crack angle were made. This paper shows that from a Leak-Before-Break viewpoint, the stainless-steel pipe is superior to the carbon-steel one, and that the pipe with the larger diameter is better than the one with the smaller diameter. No unstable fracture was observed in the tests.  相似文献   

13.
The present work presents plastic limit load solutions for thin-walled branch junctions under internal pressure and in-plane bending, based on detailed three-dimensional (3-D) finite element (FE) limit analyses using elastic–perfectly plastic materials. To assure reliability of the FE limit loads, modelling issues are addressed first, such as the effect of kinematic boundary conditions and branch junction geometries on the FE limit loads. Then the FE limit loads for branch junctions under internal pressure and in-plane bending are compared with existing limit load solutions, and new limit load solutions, improving the accuracy, are proposed based on the FE results. The proposed solutions are valid for ratios of the branch-to-run pipe radius and thickness from 0.4 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 10.0 to 20.0.  相似文献   

14.
Plastic collapse of pipe bends with attached straight pipes under combined internal pressure and in-plane closing moment is investigated by elastic–plastic finite element analysis. Three load histories are investigated, proportional loading, sequential pressure–moment loading and sequential moment–pressure loading. Three categories of ductile failure load are defined: limit load, plastic load (with associated criteria of collapse) and instability loads. The results show that theoretical limit analysis is not conservative for all the load combinations considered. The calculated plastic load is dependent on the plastic collapse criteria used. The plastic instability load gives an objective measure of failure and accounts for the effects of large deformations. The proportional and pressure–moment load cases exhibit significant geometric strengthening, whereas the moment–pressure load case exhibits significant geometric weakening.  相似文献   

15.
Experimental measurements have been made of stresses in out-of-round pipe bends under internal pressure and in-plane bending. This paper describes the results of tests on one new and one ex-service pipe bend under the two loadings and compares these results with various theoretical predictions. For the pressure case the original formula due to Haigh2 with modifications to take into account thickness variations and pipe bend radius, is reasonably accurate and for bending loads the recent formulation by Spence and Boyle12 is a reasonable approximation. The code method of combining peak stresses by addition is confirmed in this case. The results of the tests have assisted designers in reviewing allowable limits on the ovality of manufactured pipes and in placing realistic limits on the cold springing of pipes to overcome erection tolerances.  相似文献   

16.
The following cases of hydrogen influence on pipeline metal were considered: gaseous hydrogen under internal pressure in notched pipes and electrochemically generated hydrogen on external pipe surface from soil aqueous environment. The burst tests of externally notched pipes under pressure of hydrogen and natural gas (methane) were carried out after the pipe has been exposed to a constant “holding” pressure. It has been shown that even for relatively “soft” test conditions (holding pressure p = 20 bar and ambient temperature) the gaseous hydrogen is able to penetrate into near surface layers of metal and to change the mechanism of local fracture at notch. The sensitivity to hydrogenating of given steel in deoxygenated, near-neutral pH NS4 solution under soft cathodic polarisation was studied and the assessment local strength at notches in pipeline has been made for this conditions. Here, the relationship between hydrogen concentration and failure loading has been found. The existence of some critical hydrogen concentration, which causes the significant loss of local fracture resistance of material, was also shown.  相似文献   

17.
Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. The use of high-density polyethylene tubes subjected to internal pressure, external loading and environmental variations requires a reliability study in order to define the service limits and the optimal operating conditions. In service, the time-dependent phenomena, especially creep, take place during the pipe lifetime, leading to significant strength reduction. In this work, the reliability-based assessment of pipe lifetime models is carried out, in order to propose a probabilistic methodology for lifetime model selection and to determine the pipe safety levels as well as the most important parameters for pipeline reliability. This study is enhanced by parametric analysis on pipe configuration, gas pressure and operating temperature.  相似文献   

18.
This paper proposes engineering estimation equations of elastic–plastic J and crack opening displacement (COD) for axial through-wall cracked pipes under internal pressure. On the basis of detailed 3D finite element (FE) results using deformation plasticity, the plastic influence functions for fully plastic J and COD solutions are tabulated as a function of the mean radius-to-thickness ratio, the normalised crack length, and the strain hardening. On the basis of these results, the GE/EPRI-type J and COD estimation equations are proposed and validated against 3D FE results based on deformation plasticity. For more general application to general stress–strain laws or to complex loading, the developed GE/EPRI-type solutions are re-formulated based on the reference stress (RS) concept. Such a re-formulation provides simpler equations for J and COD, which are then further extended to combined internal pressure and bending. The proposed RS based J and COD estimation equations are compared with elastic–plastic 3D FE results using actual stress–strain data for Type 316 stainless steels. The FE results for both internal pressure cases and combined internal pressure and bending cases compare very well with the proposed J and COD estimates.  相似文献   

19.
The types of geometrical irregularity arising from the production of pipe bends are briefly discussed and formulae are presented which facilitate the calculation of stresses caused by each individual irregularity, when the pipe is subjected to internal pressure.The individual formulae are combined to enable the stress distribution to be calculated in a pipe bend under internal pressure with all the irregularities discussed. Results given from the formulae for a typical pipe bend are compared with results obtained by the finite element method.The requirements and limitations of British Standards are discussed in comparison with the predictions of the formulae derived in this paper.  相似文献   

20.
Theoretical results for centre-cracked panels, deforming under plane stress tensile loading conditions, are used to assess the applicability of the net-section stress approach fo? predicting the onset of crack extension at a through-wall crack in a pipe, fabricated from a very ductile material and subjected to an applied bending moment. For a given pipe diameter, the appropriate net-section stress should be essentially constant over a wide range of crack sizes; however, this stress does vary appreciably with pipe diameter. The net-section stress approach therefore has a range of useful applicability but great care must be exercised when using the approach outside this range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号