首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An endoreversible closed modified simple Brayton cycle model with isothermal heat addition coupled to variable-temperature heat reservoirs is established using finite-time thermodynamics. Analytical expressions of dimensionless power output, thermal efficiency, dimensionless entropy generation rate and dimensionless ecological function are derived. Influences of cycle thermodynamic parameters on ecological performance and optimal compressor pressure ratio, optimal power output, optimal cycle thermal efficiency and optimal entropy generation rate corresponding to maximum ecological function are obtained and compared with those corresponding to maximum power output. The results show that cycle thermal efficiency improvement and entropy generation rate reduction are obtained at the expense of higher compressor pressure ratio and a little sacrifice of power output at maximum ecological function. The compromises between power output and entropy generation rate and between power output and cycle thermal efficiency, respectively, are achieved.  相似文献   

2.
This paper describes an application of finite‐time thermodynamics to optimize the power output of endoreversible intercooled Brayton cycles coupled to two heat reservoirs with infinite thermal capacitance rates. The effects of intercooling on the maximum power and maximum‐power efficiency of an endoreversible Brayton cycle are examined. With appropriate temperature ratios of turbines and compressors being used, the maximum power output of an endoreversible intercooled Brayton cycle can be higher than that of an endoreversible simple Brayton cycle without lowering the thermal efficiency. New diagrams for maximum power, maximum‐power thermal efficiency, and optimum temperature ratios of turbines and compressors are reported. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Endoreversible Joule–Brayton cogeneration cycle has been optimized based on a new criterion, total useful energy-rate (including power output and useful heat output), and the efficiency at maximum total useful energy rate has also been determined. The effects of various cycle parameters on the maximum dimensionless total useful-energy rate and the efficiency at maximum total useful-energy rate have been assessed. Variations of dimensionless total useful-energy rate with respect to efficiency have also been analyzed. The reversible Joule–Brayton power cycle is a special case of the analyzed cycle.  相似文献   

4.
The power output of a simple endoreversible Brayton gas heat engine is analyzed and optimized. The endoreversible engine is defined as a power cycle in which the two processes of heat transfer from and to the surrounding heat reservoirs are the only irreversible processes in the Brayton cycle. A mathematical expression is derived for the power output of the irreversible heat engine. The power optimization provides the basis for designing a real gas heat engine and for a performance comparison with existing Brayton power plants.  相似文献   

5.
In this paper, power is optimized for an endoreversible closed intercooled regenerated Brayton cycle coupled to constant-temperature heat reservoirs in the viewpoint of finite-time thermodynamics (FTT) or entropy generation minimization (EGM). The effects of some design parameters, including the cycle heat reservoir temperature ratio and total heat exchanger inventory, on the maximum power and the corresponding efficiency are analyzed by numerical examples. The analysis shows that the cycle dimensionless power can be optimized by searching the optimum heat conductance distributions among the hot- and cold-side heat exchangers, the regenerator and the intercooler for fixed total heat exchanger inventory, and by searching the optimum intercooling pressure ratio. When the optimization is performed with respect to the total pressure ratio of the cycle, the maximum dimensionless power can be maximized again.  相似文献   

6.
用有限时间热力学方法分析内可逆变温热源中冷回热布雷顿循环,导出了无因次功率密度的解析式,由数值计算给出了燃气轮机功率密度特性,分析了循环中各热力参数对功率密度的影响,并对最大功率工况与最大功率密度工况下的主要参数进行了比较,得出了最大功率密度设计的优点和不足。  相似文献   

7.
基于能量分析的观点,建立了反映四热源吸收式热变换器泵热率与熵产率之间最佳折衷的生态学准则。导出了线性(牛顿)传热定律下生态学目标与泵热系数的优化关系、最大生态学目标值及其相对应的泵热系数、泵热率和熵产率以及最大泵热率时的生态学目标和熵产率。通过数值算例分析得到了吸收式热变换器的生态学优化准则。计算发现,与最大泵热率目标相比,最大生态学目标牺牲了27.3%的泵热率。使循环熵产率降低了77.0%。泵热系数增加了55.4%,表明生态学准则对吸收式热变换器优化设计是一种具有长期效应的可选优化目标。  相似文献   

8.
《Applied Energy》2005,81(1):73-84
This paper deals with the application of finite-time heat-transfer theory to optimize ecologically the power output of an endoreversible and regenerative gas-turbine power-cycle for infinite thermal-capacitance rates to and from the reservoirs. The expressions for power, thermal efficiency, and exergetic efficiency corresponding to the maximum ecological function for the gas-turbine cycle are presented. The effects of regeneration and hot–cold temperature ratio on power, entropy-generation rate, thermal efficiency and exergetic efficiency, all at the maximum ecological function, are determined. It is shown that both the power output and entropy-generation rate are increased significantly by the use of regenerators, and increase monotonically with an increase with hot/cold temperature ratio. The results further indicate that the thermal efficiency and exergetic efficiency are decreased by the use of regenerators and rise with an increase in the temperature ratio. By the introduction of the ecological function, the improvements in exergetic efficiency and thermal efficiency are evident.  相似文献   

9.
应用有限时间热力学方法,研究了恒温热源条件下实际回热式布雷顿热电联产装置的[火用]经济性能,导出了利润率及[火用]效率解析式。利用数值计算方法,分析了各种设计参数对联产装置性能的影响。  相似文献   

10.
用有限时间热力学方法建立了一个工作在恒温热源TH、TL之间,存在热阻、热漏和再热的定常流空气标准闭式布雷顿循环模型。导出了其功率、效率的一般关系并对其进行优化,得到循环的基本优化关系;分析了在傅立叶导热定律下再热对循环最优性能的影响。  相似文献   

11.
用有限时间热力学理论研究恒温热源条件下由一个内可逆闭式布雷顿热机循环和一个内可逆四热源吸收式制冷循环组成的高炉余能余热驱动的热电冷联产装置的火用经济性能,导出热电冷联产装置的利润率和火用效率与压气机压比的关系。利用数值计算,分析热电比和吸收式制冷循环总放热量在吸收器和冷凝器之间的分配率对利润率与火用效率关系的影响,并研究联产装置各种参数对最大利润率及相应火用效率特性的影响。  相似文献   

12.
This paper proposes a new cyclic model of combined regenerative Brayton and inverse Brayton cycles. The new combined regenerative Brayton and inverse Brayton cycles recover heat energy after the working fluid leaves the turbine of the inverse Brayton cycle while the original combined regenerative Brayton and inverse Brayton cycles recover heat energy before the working fluid enters the turbine of the inverse Brayton cycle. Performance analysis and optimisation of the two classes combined cycles are carried out. Furthermore, the effect of the regenerator on the performance of the two combined cycles is analysed. It is found that the new combined cycle can obtain higher thermal efficiency and larger specific work than those of the original combined cycle at low compressor pressure ratio of the top cycle, and the regenerator can improve the performance of both the combined cycles. By theoretical analysis of this paper, it reveals that the new combined cycle will be well applied in the prospect, and the original combined cycle will be suited to low power output equipments. This paper aims at enriching the gas turbine theory and providing a possible way to save energy.  相似文献   

13.
提出了后回热式布雷顿-两平行逆布雷顿联合循环模型。对该联合循环进行了能量分析,导出了联合循环热效率和比功的表达式,以热效率和比功为目标对该联合循环的性能进行了优化,分析了回热器有效度和其他参数对最优热效率和最优比功的影响。分析表明,以热效率为优化目标时,该联合循环的最优热效率随着回热度的增加而增加,其相应比功随着回热度的增加而减小;以比功为优化目标时,回热度对该联合循环的最优比功的影响很小,其相应热效率随着回热度的增加而增加。  相似文献   

14.
基于[火用]分析的观点,运用有限时间热力学方法对内可逆空气制冷机进行生态学优化,导出了换热器热导最优分配时的最佳制冷功率、熵产率以及生态学(E)目标函数的解析式,进一步求得最大E目标值时的工质等熵温比(压比)界限及相应的制冷系数、制冷功率和熵产率;采用数值计算分析了热源温比、换热器总热导以及高温热源温度和环境温度之比对该制冷机生态学最优性能的影响。结果表明:生态学目标函数不仅反映了[火用]输出率和熵产率之间的最佳折衷,而且也反映了制冷功率和制冷系数之间的最佳折衷。  相似文献   

15.
刘雄  陈林根  秦晓勇  戈延林  孙丰瑞 《节能》2013,32(1):19-21,2
应用有限时间热力学理论分析了空气标准矩形循环的性能,导出存在传热损失的空气标准矩形循环的功与膨胀比、效率与膨胀比以及功和效率的特性关系,同时分析了传热损失及循环各参数对循环性能的影响。  相似文献   

16.
应用有限时间热力学理论和方法(FTT)建立了闭式不可逆回热布雷顿热电冷联产(CCHP)装置模型,导出了装置无量纲可用能率、火用输出率、利润率、第一定律效率和火用效率的解析式。通过数值计算得到了各个性能指标与压比的关系,优化了压比。分析了设计参数对最优性能的影响,发现回热能够显著增大第一定律效率和火用效率;增大压气机和透平效率、压力恢复系数能够增大5个性能指标,但前者使相应压比增大,后者使相应压比减小;增大热电比能够显著增大可用能率和第一定律效率;分别存在最佳的供热温度使5个最优性能指标取得最大值;提高冷库温度能增大可用能率和第一定律效率,但会降低火用输出率、火用效率和利润率。  相似文献   

17.
An evaluation of the major theoretical considerations concerning the design of an endoreversible Stirling cycle with ideal regeneration is given. The factors affecting optimum power and efficiency at optimum power are analysed for the cycle based upon higher and lower temperature bounds. Heat transfer characteristics of the regenerator and the thermal source and sink, individual process times for the cycle have been studied with respect to engine design parameters like speed, compression ratio, etc. The results of this study provide additional information for use in the optimized design and evaluation of Stirling engines. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
随着深空探测的不断发展,作为最具发展潜力的能源之一,空间核动力在国内外得到大量关注和研究.空间核动力系统中热电转换技术至关重要,在大功率阶段下,布雷顿循环动态热电转换系统因其功率较大,效率较高等优点得到广泛应用和发展,对其进行特性分析和参数优化具有重要意义.对运用闭式布雷顿循环的次临界安全空间(S4)反应堆系统建立回热...  相似文献   

19.
Multi-irreversibilities, mainly resulting from the adiabatic processes, finite-time processes and heat loss through the cylinder wall, are considered in the cycle model of an Atkinson heat engine. The power output and efficiency of the cycle are derived by introducing the pressure ratio and the compression and expansion efficiencies. The performance characteristic curves of the cycle are presented. The bounds of the power output and efficiency are determined. The optimum criteria of some important parameters, such as the power output, efficiency and pressure ratio are given. The influences of the various design parameters on the performance of the cycle are analyzed in detail. The results obtained may provide a theoretical basis for both the optimal design and operation of real Atkinson heat engines.  相似文献   

20.
The performance of an isothermal endoreversible two-reservoir chemical pump, in which the mass transfer obeys diffusive law, is analysed and optimised in this paper. The relation between the rate of energy pumping and the coefficient of performance of the isothermal chemical pump is derived by using finite-time thermodynamics. Moreover, the relation between the minimum power input and the coefficient of performance, and the relation between the minimum entropy production rate and the rate of energy pumping are obtained. The results obtained herein can provide some new theoretical guidelines for the optimal design of a class of apparatus such as mass exchangers, as well as electrochemical, photochemical, solid-state devices, and the fuel pumps for solar-energy conversion systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号