首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In present study, the effect of Al2O3 particle reinforcement on the sliding behavior of ZA-27 alloy composites was investigated. The composites with 3, 5, and 10 wt% of Al2O3 particles were produced by the compocasting procedure. Tribological properties of unreinforced alloy and composite were studied, using block-on-disk tribometer under unlubricated sliding conditions at different specific loads and sliding speeds. The worn surfaces of samples were examined by the scanning electron microscopy (SEM). The test results revealed that those composite specimens exhibited significantly lower wear rate than the ZA-27 matrix alloy specimens in all combinations of applied loads and sliding speeds. The difference in the wear resistance of composite with respect to the matrix alloy, increased with the increase of the applied load/sliding speed and Al2O3 particle content. The highest degree of improvement of the ZA-27 alloy tribological behavior corresponded with change of the Al2O3 particles content from 3 to 5 wt%. At low sliding speed, moderate lower wear rate of the composites over that of the matrix alloy was noticed. This has been attributed to micro cracking tendency of the composites. Significantly reduced wear rate, experienced by the composite over that of the matrix alloy at the higher sliding speeds and loads, could be explained due to enhanced compatibility of matrix alloy with dispersoid phase and greater thermal stability of the composite in view of the presence of the dispersoid. Level of wear rate of tested ZA-27/Al2O3 samples pointed to the process of mild wear, which was primarily controlled by the formation and destruction of mechanical mixed layers (MMLs).  相似文献   

2.
In the present study, the effect of the Al2O3 particles (average size of 12 μm, 3 and 10 wt.%) reinforcement on the microstructure and tribological properties of Al–Si alloy (A356) was investigated. Composites were produced by applying compocasting process. Tribological properties of unreinforced alloy and composites were studied, using pin-on-disc tribometer, under dry sliding conditions at different specific loads and sliding speed of 1 m/s. Microhardness measurements, optical microscope and scanning electron microscope were used for microstructural characterization and investigation of worn surfaces and wear debris. During compocasting of A356 alloy, a transformation from a typical dendritic primary α phase to a non-dendritic rosette-like structure occurred. Composites exhibited better wear resistance compared with unreinforced alloy. Presence of 3 wt.% Al2O3 particles in the composite material affected the wear resistance only at specific loads up to 1 MPa. The wear rate of composite with 10 wt.% Al2O3 particles was nearly two order of the magnitude lower than the wear rate of the matrix alloy. Dominant wear mechanism for all materials was adhesion, with others mechanisms: oxidation, abrasion and delamination as minor ones.  相似文献   

3.
Tribological behaviors and the relevant mechanism of a highly pure polycrystalline bulk Ti3AlC2 sliding dryly against a low carbon steel disk were investigated. The tribological tests were carried out using a block-on-disk type high-speed friction tester, at the sliding speeds of 20–60 m/s under a normal pressure of 0.8 MPa. The results showed that the friction coefficient is as low as 0.1∼0.14 and the wear rate of Ti3AlC2 is only (2.3–2.5) × 10−6 mm3/Nm in the sliding speed range of 20–60 m/s. Such unusual friction and wear properties were confirmed to be dependant dominantly upon the presence of a frictional oxide film consisting of amorphous Ti, Al, and Fe oxides on the friction surfaces. The oxide film is in a fused state during the sliding friction at a fused temperature of 238–324 °C, so it takes a significant self-lubricating effect.  相似文献   

4.
Xian Jia  Xiaomei Ling 《Wear》2005,258(9):1342-1347
In the present study, the abrasive wear characteristics of Al2O3/PA1010 composite coatings were tested on the turnplate abrasive wear testing machine. Steel 45 (quenched and low-temperature tempered) was used as a reference material. The experimental results showed that when the Al2O3 particles have been treated with a silane coupling agent (γ-aminopropyl-triethoxysilane), the abrasive wear resistance of Al2O3/PA1010 composite coatings has a good linear relationship with the volume fraction of Al2O3 particles in Al2O3/PA1010 composite coatings and the linear correlation coefficient is 0.979. Under the experimental conditions, the size of Al2O3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance of Al2O3/PA1010 composite coatings. By treating the surface of Al2O3 particles with the silane coupling agent, the distribution of Al2O3 particles in PA1010 matrix is more homogeneous and the bonding state between Al2O3 particles and PA1010 matrix is better. Therefore, the Al2O3 particles make the Al2O3/PA1010 composite coatings have better abrasive wear resistance than PA1010 coating. The wear resistance of Al2O3/PA1010 composite coatings is about 45% compared with that of steel 45.  相似文献   

5.
The formation of an alloyed layer on steel 35 by VK8 hard alloy with added Al2O3 increases its wear resistance. Effective conditions for this process are determined. The formation of regular tungsten-carbide nanostructure is observed.  相似文献   

6.
The wear properties of a La62Cu12Ni12Al14 bulk metallic glass (BMG) using sliding wear system under the various normal loads and the annealing conditions have been investigated. Although the La62Cu12Ni12Al14 BMG is brittle during the tensile testing, it exhibits ductile behaviors during the sliding wear process. The SEM and the EDS analyses of the wear tracks and the debris after the sliding wear processes indicate that the wear mechanism is a combination of abrasion, adhesion, and oxidation. It is found that the wear resistance is significantly affected by the normal loads. With the increases in the wear load, the wear loss and the friction coefficient decrease. In addition, it is found that the wear properties are significantly affected by the annealing conditions. Compared with the annealed BMG alloys, the as-cast BMG alloy with a low hardness exhibits good wear resistance, which is attributed to the better ductility during the wear testing.  相似文献   

7.
C. K. Lee 《摩擦学汇刊》2013,56(5):640-651
Nanocomposite coatings can endow a plated surface with various properties such as wear resistance, high-temperature corrosion protection, oxidation resistance, and self-lubrication. This work studies the corrosion and corrosive wear resistance of electroplated nickel nanocomposite coatings on Ti-6Al-4V alloy in a Hank's solution, adding various concentrations of an Al2O3 powder in plating solution, with particle diameters of 20–30 nm and 1 μm for comparisons. The experimental results showed that the content of Al2O3 incorporated into the electroplated nickel composite coating increased with the concentration of Al2O3 powder in the electroplating solution, and increasing the surface hardness, corrosion, and corrosive wear resistance of electroplated nickel micro- and nanocomposite coatings caused smearing of the nodule boundary and elimination of voids in the deposits. The Al2O3 nanoparticulates were embedded and distributed more uniformly than the Al2O3 microparticulates in the nickel matrix after a heat treatment of 400°C, producing a more continuous and dense coated composite layer on the Ti-6Al-4V substrate. This phenomenon is responsible for the Ni/Al2O3 composite coating with superior surface hardness, providing high corrosion resistance and corrosive wear protection to the Ti-6Al-4V alloy substrate in Hank's solution.  相似文献   

8.
The Ni3Al matrix composites with addition of 10, 15, and 20 wt% BaMoO4 were fabricated by powder metallurgy technique, and the tribological behaviors were studied from room temperature to 800 °C. It was found that BaAl2O4 formed during the fabrication process. The Ni3Al composites showed poor tribological property below 400 °C, with high friction coefficients (above 0.6) and wear rates (above 10−4 mm3/Nm). However, the composites exhibited excellent self-lubricating and anti-wear properties at higher temperatures, and the composite with addition of 15 wt% BaMoO4 had the lowest wear rate (1.10 × 10−5 mm3/Nm) and friction coefficient (0.26). In addition, the results also indicated that BaAl2O4 for the Ni3Al composites did not exhibit lubricating property from room temperature to 800 °C.  相似文献   

9.
The effect of various nanofillers (nanofibers of Al2O3 and carbon, nanopowders of copper and SiO2) on the physico-mechanical and tribotechnical properties of superhigh-molecular polyethylene is investigated. It is determined that the modification of superhigh-molecular polyethylene by nanofibers and nanoparticles within the limits of 0.1–05 wt % results in a substantial rise in its deformation-strength characteristics and a multifold increase in its tribotechnical characteristics. By the methods of X-ray structure analysis, infrared spectroscopy, and electron microscopy, it is shown that modification of the polymer by the mentioned nanofillers results in the formation of an ordered (lamellar) permolecular structure. It is revealed that nanofibers form a stable film of friction transfer more quickly in comparison with nanoparticles. The optimum compositions of nanofillers, which determine the high wear resistance and the low constant of friction for polymer, are determined. The mechanical activation of the binder and filler powders provides a uniform distribution of the nanopowder within the binder and additionally enhances the physico-mechanical and tribotechnical properties of the composite.  相似文献   

10.
Fe3Si, Fe3Si alloys containing Cu were fabricated by arc melting followed by hot-pressing. The friction and wear behaviors of Fe3Si based alloys with and without Cu addition against Si3N4 ball in water-lubrication were investigated. The friction coefficient and the wear rates of Fe3Si based alloys decreased as the load increased. The wear rate of Fe3Si was higher than that of AISI 304. The addition of Cu can significantly improve the friction and wear properties of Fe3Si based alloys and substantially reduce the wear rates of Si3N4 ball. The wear rate of Fe3Si–10%Cu was 2.56 × 10−6 mm3 N−1 m−1 at load of 20 N and decreased to 1.64 × 10−6 mm3 N−1 m−1 at load of 90 N. The wear rate of Si3N4 ball against Fe3Si–10%Cu was 1.41 × 10−6 mm3 N−1 m−1, while the wear rate of Si3N4 ball against AISI 304 was 5.20 × 10−6 mm3 N−1 m−1 at load of 90 N. The wear mechanism was dominated by micro-ploughing. The combination of mechanical action (i.e., shear, smear and transference of Cu) and tribochemical reaction of Si3N4 with water was responsible for the improved tribological behavior of Fe3Si alloys containing Cu under high loads.  相似文献   

11.
In this paper, Fe3O4 based magnetic fluids with different particle concentrations were prepared by the co-precipitation technique. The size of the Fe3O4 nanoparticles is about 13 nm and their shape is spherical. The tribological performances of the fluids with different concentration Fe3O4 nanoparticles were evaluated in a MMW-1A four-ball machine. The results show that the tribological performance of magnetic fluids with proper Fe3O4 nanoparticles can be improved significantly. The maximum nonseized load (P B) has been increased by 38.4% compared with carrier liquid. The wear scar diameter has been reduced from 0.68 mm to 0.53 mm and the relative percentage in friction coefficient has decreased to 31.3%. The optimal concentration of the Fe3O4 nanoparticles in the carrier liquid is about 4 wt.%.  相似文献   

12.
ABSTRACT

The study of laser cladding of 90Ti-10Al2O3, 90Ti-8Al2O3-2Zn and 90Ti-4Al2O3-6Zn coatings onto Ti-6Al-4V alloy, with intention to produce defect-less, high microhardness and wear resistant coating was carried out. The coatings were deposited onto Ti-6Al-4V alloy at 900 W laser power and 0.6 m/min laser scan speed. Microstructures and phase constituents of the developed coatings were investigated by using a scanning electron microscope (SEM) and X-ray diffractometer correspondingly. Vickers microhardness tester and pin-on-disk tribometer were employed to characterize microhardness and wear behaviour of the Ti-Al2O3/Zn coatings respectively. SEM was also used to examine the worn track. It was observed that 90Ti-10Al2O3 coating yielded optimal microhardness along with maximal wear resistance in comparison to the other coatings and Ti-6Al-4V alloy. It has been established that laser cladding of Ti-Al2O3 coating with Zn contents on Ti-6Al-4V alloy alleviates the formation of cracks, however, microhardness and wear properties are negatively affected.  相似文献   

13.
During the last decade, the usage of difficult-to-machine materials such as austenitic stainless steels has increased continuously in various industrial applications. Tools such as blind hole taps, punches, or deep drawing molds are often exposed to severe wear while machining/forming these materials, mainly due to excessive adhesion and material transfer. On combination with abrasive wear due to work-hardened wear debris, tool lifetime in these applications is often limited. In this study, ball-on-disc experiments were carried out with arc-evaporated AlCrN coatings with different Al/(Al + Cr) ratios against Al2O3 and austenitic stainless steel balls in ambient atmosphere. Test temperatures of 25, 500, and 700°C were chosen for the hard Al2O3 balls simulating severe abrasive loads, whereas 25, 150, and 250°C were used for the softer stainless steel material to evaluate the adhesive wear behavior. Characterization of the wear tracks was done by scanning electron microscopy in combination with energy-dispersive X-ray analysis and optical profilometry. The best abrasive wear resistance during testing against Al2O3 was observed for the coating with the highest Al content. In the case of the austenitic stainless steel balls, sticking of the ball material to the coating surface was the dominating wear mechanism. The influence of test temperature, chemical composition, and surface roughness was studied in detail.  相似文献   

14.
We report here on the friction behavior of fine- and coarse-grained Ti3SiC2 against steel and Si3N4 balls. Two successive friction regimes have been identified for both grain sizes and both counterparts. First, Type I regime is characterized by a relatively low (0.1–0.15) friction coefficient, and very little wear. Sliding occurs between a tribofilm on the ball and the Ti3SiC2 plane when against steel. Then, a Type II regime often follows, with increased friction coefficients (0.4–0.5) and significant wear. Compacted wear debris seems to act as a third body resulting in abrasion of the ball, even in the case of Si3N4. The transition between the two regimes occurs at different times, depending on various factors such as grain size, type of pin, and normal load applied. Some experiments under vacuum showed that the atmosphere plays also a major role. The reason for this evolution is not fully clear at that time, but its understanding is of major technological importance given the unusual good properties of this material.  相似文献   

15.
The friction and wear properties of the polyetheretherketone (PEEK) based composites filled with 5 mass% nanometer or micron Al2O3 with or without 10 mass% polytetrafluroethylene (PTFE) against the medium carbon steel (AISI 1045 steel) ring under the dry sliding condition at Amsler wear tester were examined. A constant sliding velocity of 0.42 m s−1 and a load of 196 N were used in all experiments. The average diameter 250 μm PEEK powders, the 15 or 90 nm Al2O3 nano-particles or 500 nm Al2O3 particles and/or the PTFE fine powders of diameter 50 μm were mechanically mixed in alcohol, and then the block composite specimens were prepared by the heat compression moulding. The homogeneously dispersion of the Al2O3 nano-particles in PEEK matrix of the prepared composites was analyzed by the atomic force microscopy (AFM). The wear testing results showed that nanometer and micron Al2O3 reduced the wear coefficient of PEEK composites without PTFE effectively, but not reduced the friction coefficient. The filling of 10 mass% PTFE into pure PEEK resulted in a decrease of the friction coefficient and the wear coefficient of the filled composite simultaneously. However, when 10 mass% PTFE was filled into Al2O3/ PEEK composites, the friction coefficient was decreased and the wear coefficient increased. The worn scars on the tested composite specimen surfaces and steel ring surfaces were observed by scanning electron microscopy (SEM). A thin, uniform, and tenacious transferred film on the surface of the steel rings against the PEEK composites filled with 5 mass% 15 nm Al2O3 particles but without PTFE was formed. The components of the transferred films were detected by energy dispersive spectrometry (EDS). The results indicated that the nanometer Al2O3 as the filler, together with PEEK matrix, transferred to the counterpart ring surface during the sliding friction and wear. Therefore, the ability of Al2O3 to improve the wear resistant behaviors is closely related to the ability to improve the characteristics of the transfer film.  相似文献   

16.
This paper reports the tribological performance of the nano-eutectic Fe83B17 alloy under dry sliding against Si3N4 ceramic ball in ambient environment with varying applied loads and sliding speeds. Worn surfaces of the nano-eutectic Fe83B17 alloy were examined with a scanning electron microscope (SEM) and an X-ray energy dispersive spectroscope (EDS). The wear debris of the samples were also analyzed by X-ray diffractometer (XRD). The wear rate of the nano-eutectic Fe83B17 alloy was of the magnitude of 10−4 mm3/m, which was lower than that of the coarse grained Fe83B17 alloy. The friction coefficient of the nano-eutectic Fe83B17 alloy was almost the same as that of the coarse grained Fe83B17 alloy. The Fe2SiO4 oxide layer was formed on the worn surface of the nano-eutectic Fe83B17 alloy. However, on the worn surface of the coarse grained Fe83B17 alloy was found only a little Fe2SiO4. These results demonstrated that the nanostructure improved the wear resistance of the Fe83B17 alloy, but did not significantly affect the friction coefficient. The wear mechanism of the nano-eutectic Fe83B17 alloy was delamination abrasion mainly.  相似文献   

17.
Al2O3 and Cr2O3 coatings were deposited by atmospheric plasma spraying and their tribological properties dry sliding against copper alloy were evaluated using a block-on-ring configuration at room temperature. It was found that the wear resistance of Al2O3 coating was superior to that of the Cr2O3 coating under the conditions used in the present study. This mainly attributed to its better thermal conductivity of Al2O3 coating, which was considered to effectively facilitate the dissipation of tribological heat and alleviate the reduction of hardness due to the accumulated tribological heat. As for the Al2O3 coating, the wear mechanism was plastic deformation along with some micro-abrasion and fatigue-induced brittle fracture, while the failure of Cr2O3 coating was predominantly the crack propagation-induced detachment of transferred films and splats spallation.  相似文献   

18.
Tribological properties of a nano-eutectic Fe1.87C0.13 alloy were investigated under distilled-water lubrication against AISI52100 steel ball for various applied loads and sliding speeds. For comparison, the tribological behavior of annealed coarse-grained Fe1.87C0.13 alloy was also examined under the same testing conditions. Worn surfaces of both alloys were analyzed by using a scanning electron microscope (SEM). The wear rate of nano-eutectic Fe1.87C0.13 alloy was on the order of 10−5 mm3/m. The wear rate of nano-eutectic Fe1.87C0.13 alloy was higher than that of annealed Fe1.87C0.13 alloy at lower load, but lower under higher load. The friction coefficients of the two alloys were similar and exhibited a slight increase with increasing sliding speed, but a small decrease with increasing applied load. The wear mechanism of the nano-eutectic Fe1.87C0.13 alloy was transformed from plowing and corrosion wear to slight fatigue cracking with increasing applied load, whereas that of the annealed coarse-grained Fe1.87C0.13 alloy was transformed from plowing and corrosion wear to severe fatigue flaking.  相似文献   

19.
A bulk Fe67B33 alloy was prepared by a self-propagating high-temperature synthesis technique that is convenient, low in cost, and capable of being scaled up for tailoring the bulk materials. The Fe67B33 alloy is composed of dendrites with the t-Fe2B phase and eutectic matrix with the α-Fe and t-Fe2B phases. The content of the dendrite t-Fe2B is above 80 vol.%. The compressive fractured strength and Vickers microhardness are 3400 MPa and 12.4 GPa, respectively. The tribological performance of the Fe67B33 alloy is investigated under dry sliding and water lubricant against Si3N4 ceramic ball. The wear rates of the Fe67B33 alloy are of the magnitude of 10−5 to 10−4 mm3/m under water lubricant. It is lower than that of the Fe67B33 alloy under dry sliding (10−4 mm3/m). But both the friction coefficients are almost identical. Oxide layers form in both environments via different tribochemical mechanisms, which led to significant differences in wear behavior.  相似文献   

20.
Composites of Si3N4-SiC containing up to 30 wt% of dispersed SiC particles were fabricated via hot-pressing with an oxynitride glass. To determine the effect of sintering time and SiC content on the mechanical properties and the cutting performance, the composites with fixed 8 hr-sintering time and 20 wt% SiC content were fabricated and tested. Fracture toughness of the composites increased with increasing sintering time, while the hardness increased as the SiC content increased up to 20 wt%. The hardness of the composites was relatively independent of the grain size and the sintered density. For machining heat-treated AISI4140, the insert with 20 wt% SiC sintered for 8 hr showed the longest tool life while the insert with 20 wt% SiC sintered for 12 hr showed the longest tool life for machining gray cast iron. An effort was made to relate the mechanical properties, such as hardness, fracture toughness and wear resistance coefficient with the tool life. However, no apparent relationship was found between them. It may be stated that tool life is affected by not only the mechanical properties but also other properties such as surface roughness, density, grian size and the number of the inherent defects in the inserts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号