首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The abilities of Bacillus polymyxa and Bacillus thuringiensis to survive on the rice phyllospere were compared; it was found that B. polymyxa colonizes the crop better. This study also showed that B. polymyxa inoculation to rice plants increased the shoot and the root growth of the crop. Efforts were made to introduce the cry1Ac gene of B. thuringiensis subsp. kurstaki into B. polymyxa so that the application of such transgenic B. polymyxa strains would prove to be dually beneficial to rice crops both as a biopesticide and as a biofertilizer. Immunoblot analysis of the recombinant organism containing the cry1Ac gene, strain BP113, indicated efficient expression of this gene in the heterologous host. Bioassays with the first instar larvae of the yellow stem borer of rice (Scirpophaga incertulas) revealed that the protein preparations from BP113 were toxic.  相似文献   

2.
Leaves of transgenic sweetgum (Liquidambar styraciflua) trees that expressed tobacco anionic peroxidase were compared with leaves of L. styraciflua trees that did not express the tobacco enzyme. Leaves of the transgenic trees were generally more resistant to feeding by caterpillars and beetles than wild-type leaves. However, as for past studies with transgenic tobacco and tomato expressing the tobacco anionic peroxidase, the degree of relative resistance depended on the size of insect used and the maturity of the leaf. Decreased growth of gypsy moth larvae appeared mainly due to decreased consumption, and not changes in the nutritional quality of the foliage. Transgenic leaves were more susceptible to feeding by the corn earworm, Helicoverpa zea. Thus, it appears the tobacco anionic peroxidase can contribute to insect resistance, but its effects are more predictable when it is expressed in plant species more closely related to the original gene source.  相似文献   

3.
Metchnikowin is a recently discovered proline-rich peptide from Drosophila with antibacterial and antifungal properties. Like most other antimicrobial peptides from insects, its expression is immune-inducible. Here we present evidence that induction of metchnikowin gene expression can be mediated either by the TOLL pathway or by the imd gene product. We show that the gene remains inducible in Toll-deficient mutants, in which the antifungal response is blocked, as well as in imd mutants, which fail to mount an antibacterial response. However, in Toll-deficient;imd double mutants, metchnikowin gene expression can no longer be detected after immune challenge. Our results suggest that expression of this peptide with dual activity can be triggered by signals generated by either bacterial or fungal infection. Cloning of the metchnikowin gene revealed the presence in the 5' flanking region of several putative cis-regulatory motifs characterized in the promoters of insect immune genes: namely, Rel sites, GATA motifs, interferon consensus response elements and NF-IL6 response elements. Establishment of transgenic fly lines in which the GFP reporter gene was placed under the control of 1.5 kb of metchnikowin gene upstream sequences indicates that this fragment is able to confer full immune inducibility and tissue specificity of expression on the transgene.  相似文献   

4.
Pyruvate, orthophosphate dikinase (PPDK; EC 2.7.9.1) is a key enzyme in photosynthesis in plants that exploit the C4 photosynthetic pathway for the fixation of CO2. This review focuses on the structure, regulation and evolution of the C4-type ppdk gene in the maize genome. The C4-ppdk gene in maize consists of 19 exons spanning about 12 kbp. The gene is transcribed from two different initiation sites under the control of two promoters to produce two mRNAs of different sizes. The larger one contains the exon 1 sequence that encodes the chloroplast transit peptide and its product acts as C4-PPDK in chloroplasts, while the smaller one does not contain the sequence and its product may function as a C3-enzyme in the cytosol. This unusual dual promoter system is not unique to the maize C4-type ppdk gene since the same organization is also observed in the rice (C3 plant) ppdk gene and in Flaveria. Thus, the two-promoter system is common to plant ppdk genes from C3 and C4, monocot and dicot plants. A discussion is also presented of the generation of a system for regulation of the expression of the C4-type ppdk gene. A chimeric gene consisting of a reporter gene under the control of the promoter of maize C4-ppdk is exclusively expressed in photosynthetic tissues and not in roots or stems of transgenic rice. The expression of the introduced gene is also regulated by light: it is low in etiolated leaves and is enhanced by illumination. These results indicate that the regulatory system that controls ppdk expression in maize is not unique to C4 plants.  相似文献   

5.
Genetic mapping of wheat, maize, and rice and other grass species with common DNA probes has revealed remarkable conservation of gene content and gene order over the 60 million years of radiation of Poaceae. The linear organization of genes in some nine different genomes differing in basic chromosome number from 5 to 12 and nuclear DNA amount from 400 to 6,000 Mb, can be described in terms of only 25 "rice linkage blocks." The extent to which this intergenomic colinearity is confounded at the micro level by gene duplication and micro-rearrangements is still an open question. Nevertheless, it is clear that the elucidation of the organization of the economically important grasses with larger genomes, such as maize (2n = 10, 4,500 Mb DNA), will, to a greater or lesser extent, be predicted from sequence analysis of smaller genomes such as rice, with only 400 Mb, which in turn may be greatly aided by knowledge of the entire sequence of Arabidopsis, which may be available as soon as the turn of the century. Comparative genetics will provide the key to unlock the genomic secrets of crop plants with bigger genomes than Homo sapiens.  相似文献   

6.
7.
8.
9.
Expression of alpha-amylase genes during seedling development plays a key role in production of sugar from the starch stored in the cereal seed. Rice alpha-amylase Amy3D promoter/GUS constructs in transgenic rice cell lines were studied to identify cis elements in the promoter of this metabolite-regulated gene. Three sequences having the greatest effects on Amy3D gene expression included the amylase element (TATCCAT), the CGACG element, and a G box-related element (CTACGTGGCCA). These promoter cis elements are needed for high-level expression of Amy3D under conditions of sugar starvation. The involvement of G box cis-elements in environmental stress responses suggest a link between the nutrient stress and the environmental stress responses of the plant.  相似文献   

10.
11.
Expression of two genes in the alpha-amylase gene family is controlled by metabolic regulation in rice cultured cells. The levels of RAmy3D and RAmy3E mRNAs in rice cultured cells are inversely related to the concentration of sugar in the culture medium. Other genes in the rice alpha-amylase gene family have little or no expression in cultured cells; these expression levels are not controlled by metabolic regulation. A RAmy3D promoter/GUS gene fusion was metabolically regulated in the transgenic rice cell line 3DG, just as the endogenous RAmy3D gene is regulated. An assay of GUS enzyme activity in 3DG cells demonstrated that RAmy3D/GUS expression is repressed when sugar is present in the culture medium and induced when sugar is removed from the medium. The 942 bp fragment of the RAmy3D promoter that was linked to the coding region of the GUS reporter gene thus contains all of the regulatory sequences necessary for metabolic regulation of the gene.  相似文献   

12.
13.
14.
15.
In the past few years many alpha- and beta-tubulin genes of different organisms have been cloned and studied, and in most systems studied they constitute multigene families. In plants, most studies have been done in Arabidopsis thaliana and Zea mays. In this paper, the study of mRNA accumulation by in situ hybridization and the activity of three maize alpha-tubulin gene promoters (tua1, tua2 and tua3) in transgenic tobacco plants are described. In maize, the expression of these three tubulin isotypes differ in the root and shoot apex and is associated with different groups of cells throughout the distinct stages of cell differentiation. In transgenic tobacco plants the promoters of the genes, fused to the uidA reporter gene (GUS), direct expression to the same tissues observed by in situ hybridization experiments. The tua1 promoter is mainly active in cortex-producing meristematic cells and in pollen, whereas tua3 is active in cells which are differentiating to form vascular bundles in the root and shoot apices. The accumulation of tua2 mRNA is detected by RNA blot in a similar form as tua1, but at a very much low level. In situ hybridization indicates that the tua2 mRNA specifically accumulates in the maize root epidermis. No GUS staining was detected in transgenic tobacco plants with the tua2 promoter. The difference in expression of the specific genes may be linked to processes where microtubules have different functions, suggesting that in plants, as in animals, there are differences in the function of the tubulin isotypes.  相似文献   

16.
17.
The ring gland function of Drosophila melanogaster is controlled by the CNS. To identify genes that are active in brain cells and are involved in the ring gland control, we analysed enhancer trap lines with respect to CNS- and/or ring gland-specific lacZ expression in third-instar larvae. From one of the enhancer trap lines, which shows specific lacZ expression in the CNS and prothoracic part of the ring gland, the mub gene was cloned. The gene is strongly expressed in the mushroom bodies throughout development. Nucleotide sequence analysis of cDNA clones revealed a high degree of similarity to vertebrate RNA binding KH domain proteins, suggesting a function of the MUB protein in binding and stabilizing of specific mRNAs in the mushroom bodies. Null mutants of the mub gene do not exhibit a visible mutant phenotype. We speculate, therefore, that the mub gene is involved in learning and memory processes.  相似文献   

18.
Many homeobox genes control essential developmental processes in animals and plants. In this report, we describe the first cDNA corresponding to a homeobox gene isolated from a gymnosperm, the HBK1 gene from the conifer Picea abies (L.) Karst (Norway spruce). The sequence shows distinct similarities specifically to the KNOX (knotted-like homeobox) class of homeobox genes known from different angiosperm plants. The deduced amino acid sequence of HBK1 is strikingly similar within the homeodomain (84% identical) to the maize gene Knotted1 (Kn1), which acts to regulate cell differentiation in the shoot meristem. This similarity suggested that the phylogenetic association of HBK1 with the KNOX genes might be coupled to a conservation of gene function. In support of this suggestion, we have found HBK1 to be expressed in the apical meristem in the central population of nondifferentiated stem cells, but not in organ primordia developing at the flanks of the meristem. This pattern of expression is similar to that of Kn1 in the maize meristem. We show further that HBK1, when expressed ectopically in transgenic Arabidopsis plants, causes aberrations in leaf development that are similar to the effects of ectopic expression of angiosperm KNOX genes on Arabidopsis development. Taken together, these data suggest that HBK1 has a role, similar to the KNOX genes in angiosperms, in the control of cellular differentiation in the apical meristem of spruce. The data also indicate that KNOX-gene regulation of vegetative development is an ancient feature of seed plants that was present in the last common ancestor of conifers and angiosperms.  相似文献   

19.
20.
Bacillus thuringiensis is a Gram-positive bacterium, widely used in agriculture as a biological pesticide. The biocidal activity mainly resides in a parasporal protein inclusion body, or crystal. The inclusion is composed of one or more types of delta-endotoxins (Cry and Cyt proteins). Cry proteins are selectively toxic to different species from several invertebrate phyla: arthropods (mainly insects), nematodes, flatworms and protozoa. The mode of action of the insecticidal proteins is still a matter of investigation; generally, the active toxin is supposed to bind specific membrane receptors on the insect midgut brush-border epithelium, leading to intestinal cell lysis and subsequent insect death by starvation or septicemia. The toxin-encoding cry genes have been extensively studied and expressed in a large number of prokaryotic and eukaryotic organisms. The expression of such genes in transgenic plants has provided a powerful alternative for crop protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号