首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We address the problem of counting emitted photons in two-photon laser scanning microscopy. Following a laser pulse, photons are emitted after exponentially distributed waiting times. Modeling the counting process is of interest because photon detectors have a dead period after a photon is detected that leads to an underestimate of the count of emitted photons. We describe a model which has a Poisson \((\alpha )\) number N of photons emitted, and a dead period \(\Delta \) that is standardized by the fluorescence time constant \(\tau (\delta = \Delta /\tau )\), and an observed count D. The estimate of \(\alpha \) determines the intensity of a single pixel in an image. We first derive the distribution of D and study its properties. We then use it to estimate \(\alpha \) and \(\delta \) simultaneously by maximum likelihood. We show that our results improve the signal-to-noise ratio, hence the quality of actual images.  相似文献   

2.
Let \(H_{1}, H_{2},\ldots ,H_{n}\) be separable complex Hilbert spaces with \(\dim H_{i}\ge 2\) and \(n\ge 2\). Assume that \(\rho \) is a state in \(H=H_1\otimes H_2\otimes \cdots \otimes H_n\). \(\rho \) is called strong-k-separable \((2\le k\le n)\) if \(\rho \) is separable for any k-partite division of H. In this paper, an entanglement witnesses criterion of strong-k-separability is obtained, which says that \(\rho \) is not strong-k-separable if and only if there exist a k-division space \(H_{m_{1}}\otimes \cdots \otimes H_{m_{k}}\) of H, a finite-rank linear elementary operator positive on product states \(\Lambda :\mathcal {B}(H_{m_{2}}\otimes \cdots \otimes H_{m_{k}})\rightarrow \mathcal {B}(H_{m_{1}})\) and a state \(\rho _{0}\in \mathcal {S}(H_{m_{1}}\otimes H_{m_{1}})\), such that \(\mathrm {Tr}(W\rho )<0\), where \(W=(\mathrm{Id}\otimes \Lambda ^{\dagger })\rho _{0}\) is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.  相似文献   

3.
We study the problem of non-preemptively scheduling n jobs, each job j with a release time \(t_j\), a deadline \(d_j\), and a processing time \(p_j\), on m parallel identical machines. Cieliebak et al. (2004) considered the two constraints \(|d_j-t_j|\le \lambda {}p_j\) and \(|d_j-t_j|\le p_j +\sigma \) and showed the problem to be NP-hard for any \(\lambda >1\) and for any \(\sigma \ge 2\). We complement their results by parameterized complexity studies: we show that, for any \(\lambda >1\), the problem remains weakly NP-hard even for \(m=2\) and strongly W[1]-hard parameterized by m. We present a pseudo-polynomial-time algorithm for constant m and \(\lambda \) and a fixed-parameter tractability result for the parameter m combined with \(\sigma \).  相似文献   

4.
One way to depict a crystallographic structure is by a periodic (di)graph, i.e., a graph whose group of automorphisms has a translational subgroup of finite index acting freely on the structure. We establish a relationship between periodic graphs representing crystallographic structures and an infinite hierarchy of intersection languages \(\mathcal {DCL}_d,\,d=0,1,2,\ldots \), within the intersection classes of deterministic context-free languages. We introduce a class of counter machines that accept these languages, where the machines with d counters recognize the class \(\mathcal {DCL}_d\). An intersection of d languages in \(\mathcal {DCL}_1\) defines \(\mathcal {DCL}_d\). We prove that there is a one-to-one correspondence between sets of walks starting and ending in the same unit of a d-dimensional periodic (di)graph and the class of languages in \(\mathcal {DCL}_d\). The proof uses the following result: given a digraph \(\Delta \) and a group G, there is a unique digraph \(\Gamma \) such that \(G\le \mathrm{Aut}\,\Gamma ,\,G\) acts freely on the structure, and \(\Gamma /G \cong \Delta \).  相似文献   

5.
Defeasible conditionals are statements of the form ‘if A then normally B’. One plausible interpretation introduced in nonmonotonic reasoning dictates that (\(A\Rightarrow B\)) is true iff B is true in ‘mostA-worlds. In this paper, we investigate defeasible conditionals constructed upon a notion of ‘overwhelming majority’, defined as ‘truth in a cofinite subset of \(\omega \)’, the first infinite ordinal. One approach employs the modal logic of the frame \((\omega , <)\), used in the temporal logic of discrete linear time. We introduce and investigate conditionals, defined modally over \((\omega , <)\); several modal definitions of the conditional connective are examined, with an emphasis on the nonmonotonic ones. An alternative interpretation of ‘majority’ as sets cofinal (in \(\omega \)) rather than cofinite (subsets of \(\omega \)) is examined. For these modal approaches over \((\omega , <)\), a decision procedure readily emerges, as the modal logic \({\mathbf {K4DLZ}}\) of this frame is well-known and a translation of the conditional sentences can be mechanically checked for validity; this allows also for a quick proof of \(\mathsf {NP}\)-completeness of the satisfiability problem for these logics. A second approach employs the conditional version of Scott-Montague semantics, in the form of \(\omega \)-many possible worlds, endowed with neighborhoods populated by collections of cofinite subsets of \(\omega \). This approach gives rise to weak conditional logics, as expected. The relative strength of the conditionals introduced is compared to (the conditional logic ‘equivalent’ of) KLM logics and other conditional logics in the literature.  相似文献   

6.
We present some new analytical polygamy inequalities satisfied by the x-th power of convex-roof extended negativity of assistance with \(x\ge 2\) and \(x\le 0\) for multi-qubit generalized W-class states. Using Rényi-\(\alpha \) entropy (R\(\alpha \)E) with \(\alpha \in [(\sqrt{7}-1)/2, (\sqrt{13}-1)/2]\), we prove new monogamy and polygamy relations. We further show that the monogamy inequality also holds for the \(\mu \)th power of Rényi-\(\alpha \) entanglement. Moreover, we study two examples in multipartite higher-dimensional system for those new inequalities.  相似文献   

7.
In the present study, we validated Gameplay Activity Inventory (GAIN), a short and psychometrically sound instrument for measuring players’ gameplay preferences and modeling player profiles. In Study 1, participants in Finland (\(N=879\)) responded to a 52-item version of GAIN. An exploratory factor analysis was used to identify five latent factors of gameplay activity appreciation: Aggression, Management, Exploration, Coordination, and Caretaking. In Study 2, respondents in Canada (\(N=1322\)) and Japan (\(N=1178\)) responded to GAIN, and the factor structure of a 15-item version was examined using a Confirmatory Factor Analysis. The results showed that the short version of GAIN has good construct validity, convergent validity, and discriminant validity in Japan and in Canada. We demonstrated the usefulness of GAIN by conducting a cluster analysis to identify player types that differ in both demographics and game choice. GAIN can be used in research as a tool for investigating player profiles. Game companies, publishers and analysts can utilize GAIN in player-centric game development and targeted marketing and in generating personalized game recommendations.  相似文献   

8.
This paper studies the problem of approximating a function f in a Banach space \(\mathcal{X}\) from measurements \(l_j(f)\), \(j=1,\ldots ,m\), where the \(l_j\) are linear functionals from \(\mathcal{X}^*\). Quantitative results for such recovery problems require additional information about the sought after function f. These additional assumptions take the form of assuming that f is in a certain model class \(K\subset \mathcal{X}\). Since there are generally infinitely many functions in K which share these same measurements, the best approximation is the center of the smallest ball B, called the Chebyshev ball, which contains the set \(\bar{K}\) of all f in K with these measurements. Therefore, the problem is reduced to analytically or numerically approximating this Chebyshev ball. Most results study this problem for classical Banach spaces \(\mathcal{X}\) such as the \(L_p\) spaces, \(1\le p\le \infty \), and for K the unit ball of a smoothness space in \(\mathcal{X}\). Our interest in this paper is in the model classes \(K=\mathcal{K}(\varepsilon ,V)\), with \(\varepsilon >0\) and V a finite dimensional subspace of \(\mathcal{X}\), which consists of all \(f\in \mathcal{X}\) such that \(\mathrm{dist}(f,V)_\mathcal{X}\le \varepsilon \). These model classes, called approximation sets, arise naturally in application domains such as parametric partial differential equations, uncertainty quantification, and signal processing. A general theory for the recovery of approximation sets in a Banach space is given. This theory includes tight a priori bounds on optimal performance and algorithms for finding near optimal approximations. It builds on the initial analysis given in Maday et al. (Int J Numer Method Eng 102:933–965, 2015) for the case when \(\mathcal{X}\) is a Hilbert space, and further studied in Binev et al. (SIAM UQ, 2015). It is shown how the recovery problem for approximation sets is connected with well-studied concepts in Banach space theory such as liftings and the angle between spaces. Examples are given that show how this theory can be used to recover several recent results on sampling and data assimilation.  相似文献   

9.
10.
We introduce two scheduling problems, the flexible bandwidth allocation problem (\(\textsc {FBAP}\)) and the flexible storage allocation problem (\(\textsc {FSAP}\)). In both problems, we have an available resource, and a set of requests, each consists of a minimum and a maximum resource requirement, for the duration of its execution, as well as a profit accrued per allocated unit of the resource. In \(\textsc {FBAP}\), the goal is to assign the available resource to a feasible subset of requests, such that the total profit is maximized, while in \(\textsc {FSAP}\) we also require that each satisfied request is given a contiguous portion of the resource. Our problems generalize the classic bandwidth allocation problem (BAP) and storage allocation problem (SAP) and are therefore \(\text {NP-hard}\). Our main results are a 3-approximation algorithm for \(\textsc {FBAP}\) and a \((3+\epsilon )\)-approximation algorithm for \(\textsc {FSAP}\), for any fixed \(\epsilon >0 \). These algorithms make nonstandard use of the local ratio technique. Furthermore, we present a \((2+\epsilon )\)-approximation algorithm for \(\textsc {SAP}\), for any fixed \(\epsilon >0 \), thus improving the best known ratio of \(\frac{2e-1}{e-1} + \epsilon \). Our study is motivated also by critical resource allocation problems arising in all-optical networks.  相似文献   

11.
Monogamy relations characterize the distributions of entanglement in multipartite systems. We investigate monogamy relations related to the concurrence C and the entanglement of formation E. We present new entanglement monogamy relations satisfied by the \(\alpha \)-th power of concurrence for all \(\alpha \ge 2\), and the \(\alpha \)-th power of the entanglement of formation for all \(\alpha \ge \sqrt{2}\). These monogamy relations are shown to be tighter than the existing ones.  相似文献   

12.
We define a family of rules for dividing m indivisible goods among agents, parameterized by a scoring vector and a social welfare aggregation function. We assume that agents’ preferences over sets of goods are additive, but that the input is ordinal: each agent reports her preferences simply by ranking single goods. Similarly to positional scoring rules in voting, a scoring vector \(s = (s_1, \ldots , s_m)\) consists of m nonincreasing, nonnegative weights, where \(s_i\) is the score of a good assigned to an agent who ranks it in position i. The global score of an allocation for an agent is the sum of the scores of the goods assigned to her. The social welfare of an allocation is the aggregation of the scores of all agents, for some aggregation function \(\star \) such as, typically, \(+\) or \(\min \). The rule associated with s and \(\star \) maps a profile to (one of) the allocation(s) maximizing social welfare. After defining this family of rules, and focusing on some key examples, we investigate some of the social-choice-theoretic properties of this family of rules, such as various kinds of monotonicity, and separability. Finally, we focus on the computation of winning allocations, and on their approximation: we show that for commonly used scoring vectors and aggregation functions this problem is NP-hard and we exhibit some tractable particular cases.  相似文献   

13.
Users of location-based services are highly vulnerable to privacy risks since they need to disclose, at least partially, their locations to benefit from these services. One possibility to limit these risks is to obfuscate the location of a user by adding random noise drawn from a noise function. In this paper, we require the noise functions to satisfy a generic location privacy notion called \(\ell \)-privacy, which makes the position of the user in a given region \(\mathcal {X}\) relatively indistinguishable from other points in \(\mathcal {X}\). We also aim at minimizing the loss in the service utility due to such obfuscation. While existing optimization frameworks regard the region \(\mathcal {X}\) restrictively as a finite set of points, we consider the more realistic case in which the region is rather continuous with a nonzero area. In this situation, we demonstrate that circular noise functions are enough to satisfy \(\ell \)-privacy on \(\mathcal {X}\) and equivalently on the entire space without any penalty in the utility. Afterward, we describe a large parametric space of noise functions that satisfy \(\ell \)-privacy on \(\mathcal {X}\), and show that this space has always an optimal member, regardless of \(\ell \) and \(\mathcal {X}\). We also investigate the recent notion of \(\epsilon \)-geo-indistinguishability as an instance of \(\ell \)-privacy and prove in this case that with respect to any increasing loss function, the planar Laplace noise function is optimal for any region having a nonzero area.  相似文献   

14.
Based on spatial conforming and nonconforming mixed finite element methods combined with classical L1 time stepping method, two fully-discrete approximate schemes with unconditional stability are first established for the time-fractional diffusion equation with Caputo derivative of order \(0<\alpha <1\). As to the conforming scheme, the spatial global superconvergence and temporal convergence order of \(O(h^2+\tau ^{2-\alpha })\) for both the original variable u in \(H^1\)-norm and the flux \(\vec {p}=\nabla u\) in \(L^2\)-norm are derived by virtue of properties of bilinear element and interpolation postprocessing operator, where h and \(\tau \) are the step sizes in space and time, respectively. At the same time, the optimal convergence rates in time and space for the nonconforming scheme are also investigated by some special characters of \(\textit{EQ}_1^{\textit{rot}}\) nonconforming element, which manifests that convergence orders of \(O(h+\tau ^{2-\alpha })\) and \(O(h^2+\tau ^{2-\alpha })\) for the original variable u in broken \(H^1\)-norm and \(L^2\)-norm, respectively, and approximation for the flux \(\vec {p}\) converging with order \(O(h+\tau ^{2-\alpha })\) in \(L^2\)-norm. Numerical examples are provided to demonstrate the theoretical analysis.  相似文献   

15.
What is the minimal number of elements in a rank-1 positive operator-valued measure (POVM) which can uniquely determine any pure state in d-dimensional Hilbert space \(\mathcal {H}_d\)? The known result is that the number is no less than \(3d-2\). We show that this lower bound is not tight except for \(d=2\) or 4. Then we give an upper bound \(4d-3\). For \(d=2\), many rank-1 POVMs with four elements can determine any pure states in \(\mathcal {H}_2\). For \(d=3\), we show eight is the minimal number by construction. For \(d=4\), the minimal number is in the set of \(\{10,11,12,13\}\). We show that if this number is greater than 10, an unsettled open problem can be solved that three orthonormal bases cannot distinguish all pure states in \(\mathcal {H}_4\). For any dimension d, we construct \(d+2k-2\) adaptive rank-1 positive operators for the reconstruction of any unknown pure state in \(\mathcal {H}_d\), where \(1\le k \le d\).  相似文献   

16.
The effect of three-spin interaction k on thermal entanglement between alternate qubits is studied using pairwise concurrence C and energy-level diagram. It is found that k breaks the symmetry about the effect of magnetic field h on C. It shifts a dip structure and gradually effaces a boot structure when \(\left| k \right| <\left| J \right| \) (J is spin exchange coupling). A peak with C maintains 1 appears and expands, elbowing the dip backwards when \(\left| k \right| >\left| J \right| \). A sudden change in the concurrence occurs around \(\left| k \right| =\left| J \right| \), \(h=-k\). Similar conclusions about nearest-neighbor qubits are directly given.  相似文献   

17.
An action is a pair of sets, C and S, and a function \(f:C\times S \rightarrow C\). Rothschild and Yalcin gave a simple axiomatic characterization of those actions arising from set intersection, i.e. for which the elements of C and S can be identified with sets in such a way that elements of S act on elements of C by intersection. We introduce and axiomatically characterize two natural classes of actions which arise from set intersection and union. In the first class, the \(\uparrow \!\!\downarrow \)-actions, each element of S is identified with a pair of sets \((s^\downarrow ,s^\uparrow )\), which act on a set c by intersection with \(s^\downarrow \) and union with \(s^\uparrow \). In the second class, the \(\uparrow \!\!\downarrow \)-biactions, each element of S is labeled as an intersection or a union, and acts accordingly on C. We give intuitive examples of these actions, one involving conversations and another a university’s changing student body. The examples give some motivation for considering these actions, and also help give intuitive readings of the axioms. The class of \(\uparrow \!\!\downarrow \)-actions is closely related to a class of single-sorted algebras, which was previously treated by Margolis et al., albeit in another guise (hyperplane arrangements), and we note this connection. Along the way, we make some useful, though very general, observations about axiomatization and representation problems for classes of algebras.  相似文献   

18.
Two families of new asymmetric quantum codes are constructed in this paper. The first family is the asymmetric quantum codes with length \(n=q^{m}-1\) over \(F_{q}\), where \(q\ge 5\) is a prime power. The second one is the asymmetric quantum codes with length \(n=3^{m}-1\). These asymmetric quantum codes are derived from the CSS construction and pairs of nested BCH codes. Moreover, let the defining set \(T_{1}=T_{2}^{-q}\), then the real Z-distance of our asymmetric quantum codes are much larger than \(\delta _\mathrm{max}+1\), where \(\delta _\mathrm{max}\) is the maximal designed distance of dual-containing narrow-sense BCH code, and the parameters presented here have better than the ones available in the literature.  相似文献   

19.
20.
The construction of quantum MDS codes has been studied by many authors. We refer to the table in page 1482 of (IEEE Trans Inf Theory 61(3):1474–1484, 2015) for known constructions. However, there have been constructed only a few q-ary quantum MDS \([[n,n-2d+2,d]]_q\) codes with minimum distances \(d>\frac{q}{2}\) for sparse lengths \(n>q+1\). In the case \(n=\frac{q^2-1}{m}\) where \(m|q+1\) or \(m|q-1\) there are complete results. In the case \(n=\frac{q^2-1}{m}\) while \(m|q^2-1\) is neither a factor of \(q-1\) nor \(q+1\), no q-ary quantum MDS code with \(d> \frac{q}{2}\) has been constructed. In this paper we propose a direct approach to construct Hermitian self-orthogonal codes over \(\mathbf{F}_{q^2}\). Then we give some new q-ary quantum codes in this case. Moreover many new q-ary quantum MDS codes with lengths of the form \(\frac{w(q^2-1)}{u}\) and minimum distances \(d > \frac{q}{2}\) are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号