共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphors for radiation detection require efficient energy transfer from the ionization track to the luminescent centers. In this work, the radioluminescence (RL) spectra of SrAl2O4 phosphor ceramics doped with individual trivalent rare earth element (REE) ions (Sm, Eu and Dy) are reported at the room temperature. Although there is some intrinsic UV/blue emission from the host lattice, the dominant signals are from the rare-earth sites, with signals characteristic of the REE2+ and REE3+ states. The shapes of the emission bands are different for each dopant. The sharp emission properties show that the SrAl2O4 is a suitable host for rare-earth ion doped phosphor material. 相似文献
2.
The vacuum ultraviolet excited luminescent properties of Eu3+, Tb3+, Dy3+, Sm3+ and Tm3+ in the matrices of Ca4Y6(SiO4)6O were investigated. The bands at about 173 nm in the vacuum ultraviolet excited spectra were attributed to host lattice absorption of the matrix Ca4Y6(SiO4)6O. For Eu3+-doped samples, the O2− → Eu3+ CTB was identified at 258 nm. Typical 4f-5d absorption bands in the region of 195-300 nm were observed in Tb3+-doped samples. For Dy3+-doped and Sm3+-doped samples, the broad excitation bands consisted of host absorptions, CTB and f-d transition. For Tm3+-doped samples, the O2− → Tm3+ CTB was located at 191 nm. About the color purity and emission intensity, Ca4Y6(SiO4)6O:Tb3+ is an attractive candidate of green light PDP phosphor, and Ca4Y6(SiO4)6O:Dy3+ has potential application in the field of mercury-free lamps. 相似文献
3.
High quality Tl2Ba2CaCu2O8 (Tl-2212) superconducting thin films are prepared on both sides of 2 in. LaAlO3(0 0 1) substrates by off-axis magnetron sputtering and post-annealing process. XRD measurements show that these films possess pure Tl-2212 phase with C-axis perpendicular to the substrate surface. The thickness unhomogeneity of the whole film on the 2 in. wafer is less than 5%. The superconducting transition temperatures Tcs of the films are around 105 K. At zero applied magnetic field, the critical current densities Jcs of the films on both sides of the wafer were measured to be above 2 × 106 A/cm2 at 77 K. The microwave surface resistance Rs of film was as low as 350 μΩ at 10 GHz and 77 K. In order to test the suitability of Tl-2212 thin films for passive microwave devices, 3-pole bandpass filters have been fabricated from double-sided Tl-2212 films on LaAlO3 substrates. 相似文献
4.
In this work, two Tb3+ activated green phosphors: Y2O3:Tb3+ and YBO3:Tb3+ were prepared by hydrothermal method. Photoluminescence properties of both phosphors were studied in details. Both phosphors exhibit similar luminescent characteristics symbolized by the dominant green emission at 545 nm. Concentration quenching occurs at the Tb3+ concentration of 1.60 atomic% and 2.57 atomic% for Y2O3:Tb3+ and YBO3:Tb3+, respectively. Luminescence decay properties were characterized to better understand the mechanism of concentration quenching. Based on the calculation, the concentration quenching in both phosphors was caused by the dipole–dipole interaction between Tb3+ ions. 相似文献
5.
Nanoscaled Ag/Fe3O4 hybrids with different Ag contents and Cu/Fe3O4 nanoshpere and microsphere were successfully synthesized with assistance of sodium citrate and (CH2)6N4 via a hydrothermal process. The as-prepared samples were identified and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), and X-ray photoelectron spectroscopy (XPS), respectively. All samples were used as electrocatalysts modified on a glassy carbon electrode for p-nitrophenol reduction in a basic solution. The catalytic activity of Ag/Fe3O4 samples increased first and then decreased by increasing Ag content from 0% to 8%, and the one with 6% Ag displayed the highest catalytic activity. All the Cu/Fe3O4 samples exhibited enhanced catalytic activity by comparison with a glassy carbon electrode, and the one prepared with the molar ratio of Cu2+, Fe3+, citrate anion, and (CH2)6N4 with 1:1:3:5 exhibited the highest catalytic activity. 相似文献
6.
Yong Liu 《Materials Letters》2009,63(28):2526-2528
Magnetic monodisperse ferrite MFe2O4 (M = Fe, Co, Ni) nanoparticles have been successfully deposited on carbon nanotubes (CNTs) by in situ high-temperature hydrolysis and inorganic polymerization of metal salts and CNTs in polyol solution. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry (EDS) and vibrating sample magnetometer (VSM) investigations were used to characterize the final products. The influencing factors for formation of CoFe2O4 nanoparticles along CNTs have also been discussed briefly. The main advantage of this synthetic strategy is that it is beneficial for the fabrication of magnetic CNTs with a compact layer of nanoparticles and could be extended to prepare series of ferrite/CNTs nanocomposites via the substitution of metal cations. 相似文献
7.
L.L. Martin 《Optical Materials》2011,33(5):738-741
The Ba2TiSi2O8 is a well known piezoelectric, ferroelectric and non-linear crystal. Nanocrystals of Ba2TiSi2O8 doped with 1.5 Dy3+ have been obtained by thermal treatment of a precursor glass and their optical properties have been studied. X-ray diffraction patterns and optical measurements have been carried out on the precursor glass and glass ceramic samples. The emission spectra corresponding to the Dy3+: 4F9/2 → 6H13/2 (575 nm), 4F9/2 → 6H11/2 (670 nm) and 4F9/2 → 6H9/2 (757 nm) transitions have been obtained under laser excitation at 473 nm. These measurements confirm the incorporation of the Dy3+ ions into the Ba2TiSi2O8 nanocrystals which produces an enhancement of luminescence at 575 nm. At this wavelength has been demonstrated a maximum optical amplification around 1.9 cm−1 (∼8.2 dB/cm). 相似文献
8.
Guan-Xi LiuRui Zhang Quan-Lan XiaoShao-Yu Zou Wen-Fang PengLi-Wei Cao Jian-Xin Meng 《Optical Materials》2011,34(1):313-316
Bi3+,Nd3+ co-doped Gd2O3 were prepared by solid state reaction and the optical properties were investigated. The results show that the near-infrared emission of Nd3+ ions is significantly enhanced by the introducing of Bi3+ in co-doped samples. An efficient energy transfer from Bi3+ to Nd3+ corresponds to the near-infrared emission enhancement. The energy transfer efficiency reaches 64.1% for the sample with the strongest near-infrared emission, which has the optimized doping concentrations of 0.5% for Bi3+ and 2% for Nd3+. The interesting optical properties make Bi3+,Nd3+ co-doped Gd2O3 promising as the luminescent down-conversion layers in front of c-Si solar cells to enhance the performance of the solar cells. 相似文献
9.
Sm2Zr2O7 co-doped with and without 5 mol.% Yb2O3 and 5 mol.% Gd2O3 were prepared by a pressureless-sintering method at 1973 K for 10 h in air. The relative density, structure and electrical conductivity were investigated by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance spectra measurements. Both Sm2Zr2O7 and (Sm0.9Gd0.05Yb0.05)2Zr2O7 ceramics exhibit a single phase of pyrochlore-type structure. The grain conductivity, grain-boundary conductivity and total conductivity obey the Arrhenius relation, respectively, and gradually increase with increasing temperature from 723 to 1173 K. (Sm0.9Gd0.05Yb0.05)2Zr2O7 ceramic is the oxide-ion conductor in an oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The grain conductivity, grain-boundary conductivity and total conductivity of (Sm0.9Gd0.05Yb0.05)2Zr2O7 with dual Yb3+ + Gd3+ doping are higher than those of undoped Sm2Zr2O7 at identical temperature levels. 相似文献
10.
Eu2+ and Dy3+ ion co-doped Sr3Al2O6 red-emitting long afterglow phosphor was synthesized by sol-gel-combustion methods using Sr(NO3)2, Al(NO3)3·9H2O, Eu2O3, Dy2O3, H3BO3 and C6H8O7·H2O as raw materials. The crystalline structure of the phosphors were characterized by X-ray diffraction, luminescent properties of phosphors were analyzed by fluorescence spectrophotometer. The effect of excitation wavelengths on the luminescent properties of Sr3Al2O6:Eu2+, Dy3+ phosphors was discussed. The emission peak of Sr3Al2O6:Eu2+, Dy3+ phosphor lays at 516 nm under the excitation of 360 nm, and at 612 nm under the excitation of 468 nm. The results reveal that the Sr3Al2O6:Eu2+, Dy3+ phosphor will emit a yellow-green light upon UV illumination, and a bright red light upon visible light illumination. The emission mechanism was discussed according to the effect of nephelauxetic and crystal field on the 4f65d1 → 4f7 transition of the Eu2+ ions in Sr3Al2O6. The afterglow time of (Sr0.94Eu0.03Dy0.03)3 Al2O6 phosphors lasts for over 600s after the excited source was cut off. 相似文献
11.
L. Wang 《Thin solid films》2010,518(17):4817-4820
Y2O3:Eu3+ red-emitting thin film phosphor was prepared by a two-step process: the cathodical deposition of thin film of yttrium hydroxide and europium hydroxide followed by an annealing process to achieve Eu3+ doped Y2O3 film. It is found that the atomic content of Eu3+ can be well controlled by simply adjusting the volume ratio of Y(NO3)3 to Eu(NO3)3 solutions. Dependence of the photoluminescence intensity on the atomic content of Eu3+ in Y2O3 was also studied. The best photoluminescence performance of Y2O3:Eu3+ thin film phosphor was achieved as atomic content of Eu3+ equal to 1.85 at.%. 相似文献
12.
M. Grossberg J. KrustokJ. Raudoja K. TimmoM. Altosaar T. Raadik 《Thin solid films》2011,519(21):7403-7406
The quaternary semiconductors Cu2ZnSnSe4 and Cu2ZnSnS4 have attracted a lot of attention as possible absorber materials for solar cells due to their direct bandgap and high absorption coefficient (> 104 cm−1). In this study we investigate the optical properties of Cu2ZnSn(SexS1 − x)4 monograin powders that were synthesized from binary compounds in the liquid phase of potassium iodide (KI) flux materials in evacuated quartz ampoules. Radiative recombination processes in Cu2ZnSn(SexS1 − x)4 monograins were studied by using low-temperature photoluminescence (PL) spectroscopy. A continuous shift from 1.3 eV to 0.95 eV of the PL emission peak position with increasing Se concentration was observed indicating the narrowing of the bandgap of the solid solutions. Recombination mechanisms responsible for the PL emission are discussed. Vibrational properties of Cu2ZnSn(SexS1 − x)4 monograins were studied by using micro-Raman spectroscopy. The frequencies of the optical modes in the given materials were detected and the bimodal behaviour of the A1 Raman modes of Cu2ZnSnSe4 and Cu2ZnSnS4 is established. 相似文献
13.
Seung-Hyun Cho 《Materials Letters》2007,61(1):256-258
Powders of a Pb(Zn1 / 2W1 / 2)O3-introduced BaTiO3-PbTiO3 system were prepared. A two-step calcination route of a B-site precursor method was employed to promote perovskite formation. The overall effects of the Pb(Zn1 / 2W1 / 2)O3 incorporation on changes in crystalline aspects as well as dielectric properties were explored. 相似文献
14.
K. Pimraksa P. ChindaprasirtA. Rungchet K. Sagoe-CrentsilT. Sato 《Materials Science and Engineering: A》2011,528(21):6616-6623
The syntheses of lightweight geopolymeric materials from highly porous siliceous materials viz. diatomaceous earth (DE) and rice husk ash (RHA) with high starting SiO2/Al2O3 ratios of 13.0-33.5 and Na2O/Al2O3 ratios of 0.66-3.0 were studied. The effects of fineness and calcination temperature of DE, concentrations of NaOH and KOH, DE to RHA ratio; curing temperature and time on the mechanical properties and microstructures of the geopolymer pastes were investigated. The results indicated that the optimum calcination temperature of DE was 800 °C. Increasing fineness of DE and starting Na2O/Al2O3 ratio resulted in an increase in compressive strength of geopolymer paste. Geopolymer pastes activated with NaOH gave higher compressive strengths than those with KOH. The optimum curing temperature and time were 75 °C and 5 days. The lightweight geopolymer material with mean bulk density of 0.88 g/cm3 and compressive strength of 15 kg/cm2 was obtained. Incorporation of 40% RHA to increase starting SiO2/Al2O3 and Na2O/Al2O3 ratios to 22.5 and 1.7 and enhanced the compressive strength of geopolymer paste to 24 kg/cm2 with only a marginal increase of bulk density to 1.01 g/cm3. However, the geopolymer materials with high Na2O/Al2O3 (>1.5) were not stable in water submersion. 相似文献
15.
Stefan Wiechmann 《Thin solid films》2009,517(24):6847-1504
The direct measurement of the thermo-optic coefficients of aluminium oxide, tantalum pentoxide and titanium dioxide thin films is presented. Using ellipsometry on monolithically integrated permutations of the layers of silicon, silicon dioxide and the material under test, allows the direct measurement of the overall thermo-optic coefficient accounting for thermally induced changes in the dielectric permittivity and density of the materials as well as the elasto-optic effect due to the non-matching thermal expansion coefficients of the different materials. 相似文献
16.
Hongbin Liang Zifeng TianHuihong Lin Mubiao XieGuobin Zhang Pieter DorenbosQiang Su 《Optical Materials》2011,33(4):618-622
The spectroscopic properties of Na3Gd(PO4)2 and Na3Gd(PO4)2:Ce3+ phosphors in the VUV-UV spectral range were investigated. Five excitation bands of Ce3+ ions at Gd3+ sites are observed at wavelengths of 205, 246, 260, 292, and 321 nm. Doublet Ce3+ 5d → 4f emission bands are observed at 341 and 365 nm with a decay constant τ1/e around 26 ns. The X-ray excited luminescence of Na3Gd0.99Ce0.01(PO4)2 at room temperature shows a photon yield of ∼17,000 photons/MeV of absorbed X-ray energy. 相似文献
17.
A novel method for preparing Al2O3/ZrO2 (Y2O3) eutectic was developed by combining combustion synthesis with melt-casting under ultra-high gravity (CSMC-UHG). The application of UHG = 800 g resulted in a high relative density of 99.8%, and an orientation-growth along the UHG direction. The microstructure was composed of aligned growth regimes containing a triangular dispersion of orderly ZrO2 rods in Al2O3 matrix with a spacing of 300 nm. The eutectic had a high fracture toughness up to 17.9 MPa·m1/2, which was mainly attributed to the nanostructure and the elastic bridge effects of the aligned ZrO2 rods. 相似文献
18.
Changcheng Chen Wanjun ChenBenjamin Rainwater Lixin LiuHongliang Zhang Yanxia LiuXiaosong Guo Jinyuan ZhouErqing Xie 《Optical Materials》2011,33(11):1585-1590
M2Si5N8:Eu2+-based (M = Ca, Sr) red-emitting phosphors were fabricated at relatively low temperature (1200 °C) and atmospheric pressure using a simple solid-state reaction process. Several processing parameters were systematically investigated to optimize the phosphors structural characterization and photoluminescence performance, including the amount of europium and the properties of the precursor and activated materials. The as-prepared M2Si5N8:Eu2+-based (M = Ca, Sr) phosphors were orange in color and emitted intensively in the red region of 580-670 nm under 465 nm excitation. This simple fabrication technique can be readily used for the optimization of phosphor microstructures and high-performance red-emitting phosphors since it eliminates many air-sensitive precursors. 相似文献
19.
M-substituted Ca(Cu3−xMx)Ti4O12 (CCMTO) ceramics, where M = Fe and Ni, were synthesized and the influence of M substitutions for Cu on the crystal structure and ferroelectric properties of CCMTO ceramics were investigated in this study. From the variations in the lattice parameters of CCMTO ceramics, the solubility limit of Ni substitution for Cu in CaCu3−xNixTi4O12 (CCNTO) ceramics was x = 0.2, whereas that of CaCu3−xFexTi4O12 (CCFTO) ceramics was x = 0.05. The crystal structural analysis of CCMTO ceramics revealed that the single phase of CCMTO ceramics belongs to the I23 non-centrosymmetric space group of I23; as a result, the Pr and Ec values of CCFTO ceramics at x = 0.05 were 1.8 μC/cm2 and 40 kV/cm, respectively. The ferroelectric behavior of CCMTO ceramics by the M substitutions for Cu may be related to the displacement of a Ti4+ cation in the TiO6 octahedra and tilting of the Ti–O–Ti angle because of the non-centrosymmetric space group. 相似文献
20.
We report on the synthesis, structure and magnetic properties of a novel exchange bias system with Cr2O3/CrO2/Cr2O5 interfaces. Chromium oxide particles with mixed chromium valences were prepared by sintering CrO3 in air. X-ray diffraction patterns show that CrO3 lost its oxygen gradually with increasing temperature and time through Cr3O8, Cr2O5, CrO2, and finally Cr2O3 at temperatures above 760 K. X-ray photoelectron spectra indicate a low CrO2 content and a binding energy of 579.3 eV for Cr 2p3/2 photoelectrons in Cr2O5. Chromium dioxide was found to stably coexist with Cr2O3 and Cr2O5 in the particles. Magnetic measurements show hysteresis loop shifts in the sample, indicating an exchange bias induced by antiferromagnetic Cr2O3/Cr2O5 in ferromagnetic CrO2. An exchange bias of 9 mT at 5 K and a coercivity of 26.3 mT were observed in the chromium oxide particles containing CrO2. 相似文献