首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在固定床反应器中,以HZSM-5为催化剂,考察反应温度和原料质量空速等工艺条件对甲醇制丙烯反应性能的影响。研究结果显示,随着反应温度的升高,乙烯及丙烯选择性均有所升高,但较高的反应温度会使催化剂活性快速降低;当原料质量空速增大时,乙烯及丙烯选择性均有所下降。研究表明最佳的工艺条件为反应温度为460℃,质量空速为2 h-1。对经过水热处理与未经过水热处理的催化剂性能进行比较,结果表明,经水热处理的催化剂,丙烯的选择性和催化剂的寿命分别由未经水热处理的40.1%和80 h提高至48.3%和170 h。  相似文献   

2.
以工业应用的HZSM-5为催化剂,在连续固定床反应器中考察了反应温度和甲醇分压对甲醇制丙烯反应产物的影响,发现当温度大于450℃时,随着温度的升高,甲醇的转化率都能达到99%以上,乙烯和丙烯的总选择性增加,低碳烷烃选择性增加,高碳产物选择性下降;随着甲醇分压降低,甲醇转化率下降,产物丙烯/乙烯质量比(P/E比)增加,丙烯在甲醇分压为33 kPa时达到最高值,而当分压极低时,催化剂快速失活。从转化率、丙烯选择性、P/E比以及低碳烯烃产物选择性等多方面综合考虑,甲醇转化制丙烯的反应温度优选470℃,并建议甲醇分压为33 kPa。  相似文献   

3.
鉴于神华榆林能源化工有限公司600 kt/a甲醇制烯烃工业装置(配套甲醇装置产能为1.8Mt/a)生产中SMC-001催化剂耗损较多、严重影响装置运行的情况,进行了MTO-280催化剂的首次试用。对SMC-001与MTO-280催化剂的物理性质进行比较,通过试用探究反应条件(反应温度、反应压力、反应器密相藏量与待生定碳)对MTO-280催化剂反应性能的影响,并对SMC-001催化剂和MTO-280催化剂在工业装置上的效能和应用后水洗水中COD含量的影响进行比较。试用结果显示:相较于SMC-001催化剂,MTO-280催化剂的耗损明显减少,吨烯烃耗损为0.74 kg;反应温度提高,甲烷和乙烯选择性增加,丙烯选择性降低,乙烯+丙烯选择性略有降低;反应压力增大,乙烯选择性降低,丙烯和C4选择性增加,但乙烯+丙烯选择性降低;反应器密相藏量增加和待生定碳提高,甲烷和乙烯选择性增加,丙烷和丙烯选择性降低;增加待生定碳、提高反应器密相藏量、减少催化剂循环量、适度降低反应温度可使乙烯+丙烯选择性达81.48%,但甲醇转化率会略有降低,水洗水中COD含量较高。  相似文献   

4.
以磷酸、拟薄水铝石、气相二氧化硅、去离子水以及有机模板剂为原料,采用水热合成法合成SAPO-18分子筛,采用XRD、SEM和NH3-TPD表征手段对分子筛结构特性进行分析。同时考察了反应温度以及反应空速对SAPO-18分子筛在丁烯催化裂解反应中催化性能的影响。试验结果表明,在丁烯催化裂解反应中反应温度为500℃且反应空速为3.5 h~(-1)时,催化剂的催化性能最好,具有较高的丙烯收率和丙烯选择性,同时兼有较高的乙烯收率、较高的丙烯与乙烯收率比(P/E比)和较高的原料转化率。  相似文献   

5.
用等体积浸渍法制备Fe改性HZSM-5分子筛催化剂(Fe/HZSM-5)。考察了Fe/HZSM-5在不同温度下对甲醇耦合C4烃制低碳烯烃反应性能的影响,并利用紫外-可见漫反射光谱对Fe/HZSM-5进行了表征。结果表明,在低铁含量条件下,Fe改性HZSM-5分子筛上Fe(Ⅲ)主要以高分散隔离的形式存在于HZSM-5分子筛的表面,Fe改性提高了催化剂上的原料转化率以及乙烯和丙烯选择性,从而获得了较高的乙烯和丙烯总收率。在反应温度为550 ℃时,在Fe(Ⅲ)处理的HZSM-5分子筛上,乙烯和丙烯总收率最高可达42.1%,比未改性的HZSM-5提高了7%。  相似文献   

6.
《中氮肥》2019,(3)
甲醇制烯烃工业装置中,产品选择性除受催化剂自身性能、甲醇空速、反应温度、反应压力、反应器催化剂藏量等的影响外,催化剂积炭(再生定碳和待生定碳)对其也有明显影响。分析神华榆林能源化工有限公司甲醇制烯烃工业装置在反应压力0.11 MPa、甲醇进料负荷110%、反应温度482~484℃的工艺条件下再生定碳和待生定碳对产品选择性的影响,得出如下结论:再生定碳和待生定碳提高均可获得较高的乙烯+丙烯选择性,而提高再生定碳有利于减少碳四、碳五及以上组分的生成,提高待生定碳则可能会引起分子量较大的有机物在水洗塔内冷凝而堵塞塔盘;当反应温度、甲醇进料负荷和烧焦强度一定时,催化剂的循环量会影响再生定碳和待生定碳,使再生定碳和待生定碳呈相反的变化趋势;要获得较高的乙烯+丙烯选择性,对再生定碳和待生定碳要求不同,反应器和再生器的操作条件也不尽相同;维持较高的再生定碳和待生定碳时,产生的有机物进入水洗塔凝结后会堵塞水洗塔塔盘,需注入柴油对水洗塔进行清洗,以降低水洗塔压差。  相似文献   

7.
采用小孔SAPO-34分子筛为活性基质,经过改性、喷雾干燥成型及适当温度焙烧后,得到适用于流化床的二甲醚或甲醇高选择性转化为低碳烯烃的催化剂D803C-Ⅱ01。研究反应温度、反应压力和催化剂停留时间对甲醇制低碳烯烃反应的影响以及D803C-Ⅱ01催化剂再生过程及其变化规律。结果表明,乙烯+丙烯选择性约在425℃达到最大值,在反应总压力不大于0.2 MPa、催化剂停留时间为55 min、催化剂与物料接触时间大于0.2 s条件下,均能保证反应转化率接近100%,但反应接触时间从0.6 s增大至3 s,会造成乙烯+丙烯选择性降低3~5个百分点。  相似文献   

8.
HZSM-5催化剂上甲醇制丙烯反应条件的研究   总被引:1,自引:0,他引:1  
以HZSM-5分子筛为催化剂,在固定床反应器中考察了反应温度和原料空速对甲醇制丙烯性能的影响。结果表明,随着反应温度的升高,乙烯和丙烯选择性均增加,但温度过高容易引起催化剂的失活;而随原料空速的增大,甲醇转化率、乙烯和丙烯的选择性均呈下降趋势。最佳的反应条件为反应温度为460°C,原料液时空速为1.4 kg(Methanol)/kg(cat.).h。对添加粘结剂与未添加粘结剂成型后的催化剂性能比较,表明添加粘结剂成型后,甲醇转化率和丙烯选择性有所下降。  相似文献   

9.
在固定床反应器中考察了反应温度对SAPO-34分子筛催化氯甲烷反应的影响;同时考察了再生温度对SAPO-34再生性能的影响,并采用XRD、SEM、FTIR等方法对使用前后催化剂进行了表征。结果表明,当反应温度由400℃升高至475℃时,乙烯选择性随温度升高和反应时间延长而增大,丙烯选择性随反应温度升高和反应时间延长而减小;SAPO-34分子筛再生后,催化剂活性基本恢复,初始乙烯选择性明显增大,丙烯选择性减小;再生温度升高,初始乙烯选择性变化较小,丙烯选择性增大;对比表征结果发现,使用后催化剂与新鲜催化剂相比,结晶度有所下降,催化剂的形貌有一定程度的破坏,红外振动峰的位置与新鲜催化剂基本一致。  相似文献   

10.
在等温固定床反应器中使用高硅铝比的H-ZSM-5分子筛催化剂,考察了温度、空时和进料比例3个反应条件对甲醇与戊烯耦合反应制丙烯的影响。适宜的温度范围为420~500℃,此时甲醇转化率可达到100%,升高温度可提高甲醇转化率和丙烯选择性,并减少副产物烷烃和芳烃的生成;减小空时可减少副产物的产生并提高丙烯与乙烯生成比例,但当空时减小到1~5(g·h)/mol,丙烯生成量减小;耦合反应相比甲醇和戊烯各自单独进料,可明显减少副产物生成,甲醇进料比例的增大能够使丙烯的选择性升高,但戊烯的转化率会降低。n(甲醇)/n(戊烯)为2时,副产物的生成量最小。  相似文献   

11.
采用浸渍法制备Pd-Ag/α-Al2O3催化剂,采用碳二前脱丙烷前加氢工艺系统考察反应器入口温度、空速和反应压力对催化剂性能的影响。结果表明,随着反应器入口温度升高,乙炔和丙炔+丙二烯转化率提高,乙烯选择性提高至一定值后趋于稳定,丙烯选择性波动不大,正丁烯生成量增加,较为适宜的反应器入口温度为(60~70)℃;随着空速升高,乙炔和丙炔+丙二烯转化率降低,乙烯选择性提高,丙烯选择性变化不大,正丁烯生成量降低,较为适宜的空速为(12 000~14 000)h-1;随着反应压力升高,乙炔转化率和丙炔+丙二烯转化率略增,乙烯选择性降低,较为适宜的反应压力为3.6 MPa。  相似文献   

12.
以钛硅分子筛TS-2为催化剂,过氧化氢为氧化剂,甲醇为溶剂,研究TS-2催化剂催化丙烯生成环氧丙烷.考察了停留时间、反应温度、反应压力和催化剂用量对环氧丙烷收率和选择性的影响.实验结果表明,合适的反应条件为50℃,0.30 MPa,催化剂用量为反应物质量的3.44%,停留时间90 min.在该条件下反应,过氧化氢的平均转化率和环氧丙烷的选择性分别为45%和96%左右.TS-2催化剂的重复使用实验表明,TS-2催化剂在催化丙烯环氧化制环氧丙烷的反应中具有较好的催化活性和稳定性.  相似文献   

13.
轻汽油在HZSM-5分子筛上催化裂解制丙烯的研究   总被引:1,自引:0,他引:1  
王敏  陈金鹏  王海彦  魏民  马俊 《工业催化》2006,14(11):23-25
以催化裂化轻汽油(≤75 ℃)为原料,在小型固定床反应器上,考察了反应温度、反应空速、催化剂不同硅铝物质的量比及载体Al2O3含量对轻汽油的催化裂解性能及丙烯选择性的影响。实验结果表明,反应温度和空速对催化裂解的产物分布和丙烯收率有较大的影响,高硅铝比催化剂的丙烯选择性比低硅铝比催化剂好,适量Al2O3的添加有助于提高丙烯收率。选择合适的反应条件可以有效提高催化剂的裂化性能并能很好抑制氢转移反应的进行,从而提高丙烯的选择性。在550 ℃、0.2 MPa和空速4 h-1条件下,高硅铝比n(SiO2)∶n(Al2O3)=200]催化剂的丙烯收率为37.56%,当添加30%的Al2O3时,丙烯收率增至38.26%。  相似文献   

14.
以C2~C4烯烃作为碳四烯烃催化裂解制乙烯和丙烯反应系统模型,借助吉布斯自由能最小原理对碳四烯烃裂解过程进行热力学计算。结果表明,随着温度升高,乙烯平衡收率升高,610℃时,丙烯平衡收率达44.8%。在丁烯裂解过程中,随着压力降低,乙烯平衡收率升高,压力低于0.1 MPa时,随着压力降低,乙烯平衡收率升高速率加快,由0.1 MPa时的21.8%升至0.01 MPa时的46.5%。压力在(0.05~0.8)MPa时,随着压力降低,丙烯平衡收率缓慢升高,0.05 MPa时达45%,之后迅速下降。热力学计算结果与实验结果比较显示,实验温度范围,1-丁烯在ZSM-5分子筛催化剂上催化裂解过程中乙烯和丙烯的收率以及丁烯转化率随温度的变化趋势同热力学计算结果一致。从提高丙烯收率的角度,建议温度(500~580)℃,压力0.05 MPa。  相似文献   

15.
《应用化工》2017,(3):430-434
采用浸渍法制备了一系列不同K载量的K/ZSM-5催化剂,在小型固定床实验装置上考察了催化剂的正己烷催化裂解活性及产物分布的影响规律。结果表明,碱金属K改性可以降低ZSM-5分子筛的酸性,从而大大提高了丙烯的选择性,使得丙烯/乙烯质量比从0.59提高至3.22,同时也降低了甲烷、芳烃等副产物的选择性。另外,还考察了反应条件对1.0 K/ZSM-5催化剂反应性能的影响,当反应温度650℃,空速3 h-1时,双烯收率大于48%,丙烯/乙烯质量比达到1.30。  相似文献   

16.
《应用化工》2022,(3):430-434
采用浸渍法制备了一系列不同K载量的K/ZSM-5催化剂,在小型固定床实验装置上考察了催化剂的正己烷催化裂解活性及产物分布的影响规律。结果表明,碱金属K改性可以降低ZSM-5分子筛的酸性,从而大大提高了丙烯的选择性,使得丙烯/乙烯质量比从0.59提高至3.22,同时也降低了甲烷、芳烃等副产物的选择性。另外,还考察了反应条件对1.0 K/ZSM-5催化剂反应性能的影响,当反应温度650℃,空速3 h-1时,双烯收率大于48%,丙烯/乙烯质量比达到1.30。  相似文献   

17.
以SiO2为载体制备了WO3/SiO2固体催化剂。在WO3/SiO2催化剂上使用乙烯和2-丁烯作为原料进行反应。考察了乙烯、丁烯进料比、质量空速、温度、压力对反应的影响。结果表明在乙烯/丁烯为1、WHSV3.1 h-1、400℃、2.1 MPa条件下,2-丁烯转化率可达到76.0%,丙烯选择性可达87.5%。经8 h反应后,2-丁烯转化率和丙烯选择性均有所下降,将催化剂于550℃高温再生能恢复部分活性。  相似文献   

18.
利用固定流化床反应器,考察了甲醇在改性ZSM-5分子筛催化剂上转化过程。实验结果表明:反应温度增加,甲醇转化率上升;乙烯和丙烯碳基选择性随温度增加而增加,且丙烯选择性的增加速率大于乙烯选择性的增加速率;油相产物的碳基选择性随温度增加而降低,而油相中芳烃浓度随温度的增加而增加;芳烃产物主要为C8芳烃,且C6芳烃、C7芳烃、C8芳烃随温度的增加而降低。由于分子筛酸性随温度的增加而变弱,降低了丙烯的氢转移反应速率,故丙烷/丙烯比随温度的增加而降低。  相似文献   

19.
通过对小型反应器内气相甲醇催化制二甲醚反应进行高温热态实验,探究了反应温度与甲醇质量空速对催化剂床层轴向温度分布的变化规律,同时分析了不同的操作条件对甲醇转化率和二甲醚选择性的影响,从而优化小型反应器的操作参数。研究结果表明:当甲醇质量空速为1 h-1时,在不同反应温度条件下,催化剂床层会出现约1.7~2.9℃的轴向绝热温升,且催化剂床层热点温度接近于催化剂床层轴向中部位置;当反应温度为250℃,甲醇质量空速为1 h-1时,催化剂床层轴向温度分布曲线较为平缓,且甲醇转化率和二甲醚收率均较高,即反应温度为250℃及甲醇质量空速为1 h-1可视为该小型反应较优的操作条件。  相似文献   

20.
甲醇分压和ZSM-5晶粒大小对甲醇制丙烯的影响   总被引:1,自引:0,他引:1  
合成了晶粒大小不同的高硅ZSM-5沸石催化剂,采用X射线衍射仪(XRD)、电感耦合等离子体发射光谱仪(ICP)、吡啶红外光谱(Py-IR)、27Al 核磁共振仪(27Al- NMR)和扫描电子显微镜(SEM)对催化剂进行了表征,并考察了甲醇分压和催化剂晶粒大小对甲醇制丙烯的影响.结果表明,甲醇分压越低,催化剂晶粒越小,丙烯收率和丙烯与乙烯质量收率比越高.在甲醇分压为0.01 MPa和470 ℃条件下,采用粒径为0.6 μm的催化剂Z-0.6进行反应,丙烯的质量收率和丙烯与乙烯质量比分别为44.1%和8.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号