首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alloy AZ91D is a leading magnesium alloy used for structural applications. It contains aluminum and zinc as principal alloying elements. This alloy is normally die-cast, but recent developments in semi-solid injection molding (Thixomolding®), which offers certain processing advantages, produces a slightly different microstructure than die-casting, and it was of interest to determine whether the two processing routes would measurably affect the friction and wear of AZ91D. The present work involved ambient air, room temperature testing of die-cast (DC) and Thixomolded® (ThM) AZ91D, in both unidirectional and reciprocating sliding motion, using stainless steel type 440C as the counterface. After running-in, the average sliding friction coefficients in both types of test fell into the range of 0.29–0.35, irrespective of processing method. The formation of a built-up edge raised the friction slightly in unidirectional tests compared with reciprocating tests. The average wear rate of the ThM alloys in reciprocating sliding was approximately 25% lower than that for DC alloys. However, the wear rates of the magnesium specimens in unidirectional sliding were comparable for DC and ThM materials. Owing to the transfer of magnesium, there was no measurable wear on the stainless steel 440C balls. The wear mechanism during sliding involves the formation of thin, narrow shards along the edges of wear grooves which break off to produce loose particles.  相似文献   

2.
Aluminium alloy AA6061 reinforced with different mass fractions of (0, 2.5, 5, 7.5 & 10 weight percentage) TiC particles was fabricated by the in-situ reaction process. The in-situ synthesized aluminium matrix composite (AMCs) were examined using X-ray diffraction, field emission scanning electron microscope and electron backscatter diffraction. The results from the aforesaid tests revealed the formation of TiC particles. The in-situ formed particles were found to have a homogenous distribution, clear bonding and good interface with the aluminium alloy AA6061. The dry sliding wear test results revealed an improvement in wear performance of aluminium alloy AA6061 due to the presence of TiC particulate. Furthermore, the in-situ formed TiC particulates refined the grain structure. The in-situ formed TiC particles improved the load bearing ability of the AMCs. The wear mechanisms recorded during the wear test were ploughing and adhesion at lower load and delamination at higher load.  相似文献   

3.
To investigate the dynamic mechanical behavior of AZ31 Mg alloy,dynamic compression was carried out using a split Hop kinson pressure bar(SHPB) apparatus at strain rates up to 2.0×103 s-1,and d ynamic hardness was tested employing a dynamic hardness device at room temperatu re.Microstructural characteristic was analysed by optical microscopy.The dynam ic compression results demonstrate that AZ31 Mg alloy exhibits obvious yield phe nomena and strain hardening behavior at high strain rates.The basically same cu rvature of stress-strain curves shows a similar strain hardening rate.The dyna mic yield strength changes little,and the peak stress increases with the strain rates.The dynamic hardness test results indicate that the dynamic mechanical p roperties of AZ31 alloy sheet are anisotropic.The dynamic hardness increases sl owly with average strain for the 0° and 45° oriented samples.For the 90° ori e nted sample,dynamic hardness with strain increases rapidly first and then decre ases when the strain is more than 0.14.An examination by optical microscopy aft er high strain rate deformation reveals the occurrence of twinning,and the twin area percentage escalates with the strain rate increasing.  相似文献   

4.
H. C. How  T. N. Baker 《Wear》1997,210(1-2):263-272
The steady-state wear of aluminium alloy AA6061 and AA6061-based Saffil fibre-reinforced composites, manufactured by a PM route, was investigated with a pin-on-disc configuration under dry sliding conditions. Using a constant sliding velocity, the wear rates of the monolithic alloy and the composites increased proportionally with the applied load. The benefit of Saffil reinforcement at volume fractions of 5, 10 and 20% was not substantial at loads ranging from 4.9 to 48.3 N. As the applied load decreased to 1.1 N, the composite showed a promising improvement in wear resistance as the volume fraction of Saffil reinforcement increased. At loads of 19.2 N and above, the wear resistance of the AA6061 composite was slightly impaired when the volume fraction of the Saffil reinforcement was increased from 5 to 20%. Compared with over-aged samples, the improvement of the wear resistance due to peak-ageing was not significant, although the Vickers hardness of the peak-aged samples was double that of the over-aged samples. The surface morphology of both the monolithic alloy and the composites after testing under loads of 9.8 or 48.3 N revealed a compacted layer which comprised mainly aluminium and iron. The amount of iron transferred increased with the applied load and with the volume fraction of Saffil in the composite. Energy Dispersive X-ray (EDAX) analysis indicated that the wear debris was generated mainly from the compacted layer. On the basis of the experimental observations, delamination was considered to be the controlling wear mechanism for the monolithic specimens tested at all loads and the composite specimens tested at loads ranging from 4.9 to 48.3 N. At a load of 1.1 N, surface fatigue, which caused surface cracking, was evident for the composite specimens.  相似文献   

5.
R.N. Rao  S. Das  D.P. Mondal  G. Dixit 《Wear》2009,267(9-10):1688-1695
This paper describes the results of dry sliding wear tests of aluminium alloy (Al–Zn–Mg) and aluminium (Al–Zn–Mg)–10, 15 and 25 wt.% SiCp composite was examined under varying applied pressure (0.2 to 2.0 MPa) at a fixed sliding speed of 3.35 m/s. The sliding wear behaviour was studied using pin-on-disc apparatus against EN32 steel counter surface, giving emphasis on the parameters such as coefficient of friction, rise in temperature, wear and seizure resistance as a function of sliding distance and applied pressure. It was observed that the wear rate of the alloy was noted to be significantly higher than that of the composite and is suppressed further due to addition of silicon carbide particles. The temperature rise near the contacting surfaces and the coefficient of friction followed reversed trend. Detailed studies of wear surfaces and subsurface deformation have been carried out. The wear mechanism was studied through worn surfaces and microscopic examination of the developed wear tracks. The wear mechanism strongly dictated by the formation and stability of oxide layer, mechanically mixed layer (MML) and subsurface deformation and cracking. The overall results indicate that the aluminium alloy–silicon carbide particle composite could be considered as an excellent material where high strength and wear resistance are of prime importance.  相似文献   

6.
A study has been made of the reciprocating dry sliding wear behaviour of polyamide 66 and polycarbonate containing glass fibres, ultra high molecular weight polyethylene (UHMWPE) and polytetrafluoroethylene (PTFE/2% Si oil). Studies have been conducted at sliding loads of 2 kg and 10 kg at an average velocity of 0.33 m s−1 against a hardened stainless steel counterface with a surface roughness of 0.3 μm.It has been shown that additions of 10–15% of filler/reinforcement lead to greatly improved sliding wear behaviour. PTFE/2% Si oil filled polyamide 66 has been shown to have the best overall wear performance whilst the high glass filled variants of polyamide 66 and polycarbonate have the best combination of wear resistance and mechanical strength. These findings are discussed with reference to composite constitution and properties, thermal effects and counterface interactions. Explanations are advanced to account for the differences in behaviour inter alia the composite materials.  相似文献   

7.
薛峰  周仲荣 《机械》2008,35(2):69-72
研究了AZ91D镁合金在冲击载荷和去离子水介质综合作用下的磨损特性.结果表明,镁合金表面冲击斑深度及面积随冲击次数的增加而增加;冲击磨损初期,损伤的主要形式为塑性变形及粘着磨损,随着表面塑性耗竭,微观疲劳裂纹产生;磨损后期,水介质的腐蚀作用明显,加速了材料表面的损失.  相似文献   

8.
9.
Fretting wear behavior of AZ91D and AM60B magnesium alloys   总被引:2,自引:0,他引:2  
Weijiu Huang  Bin Hou  Youxia Pang  Zhongrong Zhou 《Wear》2006,260(11-12):1173-1178
The fretting wear behavior of the AZ91D and AM60B magnesium alloys are investigated using a reciprocating fretting wear machine under dry conditions with different numbers of cycles, different normal loads, slip amplitudes and frequencies. The worn surfaces and wear debris were examined using scanning electron microscopy and optical microscopy in order to understand the predominant wear mechanisms of two magnesium alloys. The results indicate that the AZ91D alloy displays a lower friction coefficient and lower wear quantity than the AM60B alloy. The AZ91D shows a higher capability than AM60B in resisting crack nucleation and propagation. Both AZ91D and AM60B show similar friction and wear characteristics. The wear quantity increases with increasing normal load, but decreases with increasing frequency. The friction coefficient also decreases as the normal load is increased. Fretting frequency had little effect on the friction coefficient. In a long term, the fatigue wear and abrasive wear were the predominant wear mechanisms for AM60B and delamination wear, adhesive wear and abrasive wear for AZ91D.  相似文献   

10.
The effect of heat treatment on microstructure, hardness, tensile properties, fracture mode and wear behaviour during lubricated and dry sliding of the zinc-based alloy with 25 wt.%Al was studied. Microstructural investigation and chemical analysis of as-cast and heat-treated specimens, the fracture and worn surfaces, as well as wear debris were performed by scanning electron microscopy and energy dispersive spectroscopy. Wear tests were carried out using a disc-on block-type wear machine. By a relatively simple heat treating consisting of a short-term annealing in the single-phase region followed by water-quenching, the elongation has been markedly improved, while the strength was maintained high. The results indicate that the wear rate strongly depends on the microstructure, applied load and sliding conditions. The wear rate increases with load, and under dry sliding conditions the wear rate is approximately two orders of a magnitude higher than under lubricated conditions. During dry sliding the best wear behaviour was displayed by the water-quenched specimens, whereas slowly cooled specimens showed the higher wear rate. Lubrication strongly affects the wear behaviour. Contrary to dry sliding, slowly cooled specimens exhibit the best wear properties under lubricated conditions. The wear mechanisms were proposed for dry and lubricated sliding. An erratum to this article can be found at  相似文献   

11.
Abstract

Nanosize B4C and/or MoS2 particles reinforced AA2219 alloy composites were prepared using the stir casting process. The wear properties were evaluated for several speed (3.14–5.65 m s?1), load (10–50 N) and distance (0–2500 m) conditions. The nanoparticles dispersion, density, wear resistance, morphology of the worn surface and loose wear debris were discussed in detail. The wear resistance improvement results by nanoparticle addition correspond well with the hardness. Between the nanocomposites, hybrid composites show significantly higher wear resistance for all load, speed and sliding distance conditions. The better wear resistance is attributed to the matrix strengthening by nanoparticles and the lubricant-rich tribolayer controlled wear in the hybrid composites. The intensity of abrasive, oxidation and delamination wear mechanisms decide the wear rate at any particular wear testing condition.  相似文献   

12.
Abstract

The wear behaviour of polytetrafluroethylene (PTFE) filled with 25% glass and 40% bronze particles was studied on a pin on disc test rig. Solid lubricant composite materials were prepared by compression moulding technique. The wear parameters considered for the study were applied load, sliding speed and sliding distance. The experimental results indicate that the weight loss increases with increasing load, sliding speed and sliding distance, as expected. Sliding distance has more effect on weight loss followed by applied load. The 40% bronze+PTFE composite exhibits better wear resistance compared to other types. The dominant interactive wear mechanisms during sliding of PTFE and its composites are discussed in this paper.  相似文献   

13.
R.L. Mehan 《Wear》1982,78(3):365-383
In pin-on-disc tests, diamond composites, consisting of diamonds imbedded in a silicon matrix, were run against themselves in air at a sliding speed of 125 cm s?1 and for loads up to 3.6 kgf. In addition, a few experiments involving sintered diamond compacts rubbing against a rotating metal ring in a ring-and-block configuration were conducted. For the diamond composite wear tests, wear was found to be proportional to load and sliding distance for P ? 3.0 kgf. For both the diamond composite and the diamond compact, the wear rates were very low and similar to those previously observed for single-crystal diamonds rubbed by diamond and metal.  相似文献   

14.
Dry sliding wear performance of a squeeze cast aluminium alloy-alumina fibre composite has been examined in this investigation using a pin-on-disc machine. A composite in the form of a pin was evaluated against a rotating EN 25 steel disc. The wear response of the base alloy was also studied to assess the influence of a reinforcing phase over a range of applied pressures until the onset of seizure. Incorporation of alumina fibres resulted in superior wear performance of the base alloy, i.e. reduced wear loss, improved seizure pressure and reduced rise in temperature near contact surfaces. Onset of seizure in general caused significantly higher wear loss and temperature rise and large adhesion of the specimen material to the disc surface. A longitudinal cross-section of worn samples suggested nominal wear-induced microstructural changes and deformation in the subsurface regions. The wear surfaces revealed smooth and continuous grooves with less damaged regions prior to onset of seizure, while severe surface damage was observed thereafter. Similarly, debris particles generated during onset of seizure were coarser. The presence of deeper grooves on the wear surfaces and iron mass in the debris particles indicated abrasion to be one of the wear mechanisms in addition to adhesion. That the debris particles were mainly of flake type consisting of microcracks indicated that material removal occurred mainly by delamination.  相似文献   

15.
对热型连续定向凝固工艺生产的Cu-0.1Ag合金进行干滑动摩擦磨损实验并将该材料与耐磨性较好的单晶铜进行对比实验。分析讨论载荷、滑动速度等因素对该材料磨损率及磨损表面的影响。实验结果表明:滑动距离、滑动速度对铜合金的磨损有较大影响,而且铜合金的抗磨性能明显优于耐磨性较好的单晶铜。  相似文献   

16.
17.
In the present study, the effect of granite reinforcement on the dry sliding wear behaviour of an aluminium–silicon alloy (BS:LM6) was investigated using a pin-on-disc machine. The composite was prepared using liquid metallurgy technique wherein 10 wt.% granite particles were incorporated in the matrix alloy. Sliding wear tests were conducted at applied loads in the range 0.2–1.6 MPa and speeds of 1.89, 3.96 and 5.55 m/s. The matrix alloy was also prepared and tested under identical conditions in order to see the influence of the dispersoid phase on wear behaviour. It was observed that the composite exhibited lower wear rate than that of the matrix alloy. Increasing applied load increased the wear rate. In the case of the composite, the wear rate decreased with speed except at higher pressures at the maximum speed; the trend reversed in the latter case. On the contrary, the matrix alloy exhibited minimum wear rate at the intermediate test speed. Seizure pressure of the composite was significantly higher than that of the matrix alloy, while temperature rise near the contacting surfaces and the coefficient of friction followed an opposite trend. SEM examination of the worn surfaces, subsurface regions and debris enabled to understand the operating wear mechanisms.  相似文献   

18.
《Wear》2007,262(3-4):292-300
Several wear tests were carried out at different pressures and temperatures on Al-8090 and Al-8090 + 15 vol.% SiCp. Worn specimens and debris were also examined using SEM and EDX techniques to identify the dominant wear mechanisms. Wear rate increases about two orders of magnitude when temperature is above a critical one. The transition from mild to severe wear is dependent on nominal pressure. The composite transition temperature is higher than that of the unreinforced alloy. Within the mild wear regime, the wear rates for both materials exhibit a minimum over 100 °C and are higher for the composite material than for the Al-8090 below the transition temperature. It has been also observed that the presence of mechanically mixed layers (MML) on the wear surface with varying morphology and thickness influenced the wear rate. The morphology and composition of the wear debris also change with the wear mechanism.  相似文献   

19.
This study pertains to the observations made during the sliding wear response of a zinc-based alloy in different test conditions. The effects of sliding speed and load on the wear behaviour of the alloy have been studied. The properties evaluated were wear rate, frictional heating and coefficient of friction. The wear performance of the zinc-based alloy has been compared with that of a conventional cast iron in identical test conditions. The wear rate of the samples increased with applied load and sliding speed while the seizure resistance (load) deteriorated with speed. The zinc-based alloy exhibited less wear rate and reduced frictional heating than that of the cast iron while friction coefficient followed a reverse trend. Observed wear response of the samples has been discussed in terms of specific features like lubricating, load carrying, microcracking and thermal stability of various microconstituents of the samples, and substantiated further through the features of wear surfaces, subsurface regions and debris.  相似文献   

20.
Using a pin-on-disc apparatus, the wear behavior of Cu–15Ni–8Sn alloy aged for different periods of time at 400 °C was investigated under dry condition. The results showed the wear rate was inversely proportional to the hardness of the alloy, but the maximum wear resistance was not consistent with maximum hardness. The alloy contained about 10% (volume) cells precipitated along grain boundaries had the lowest wear rate. The friction coefficient was constant for different hardness. SEM micrographs of the debris and pin revealed that the removal process of surface material involved subsurface deformation, crack nucleation, crack propagation and delamination of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号