首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
室温直流磁控溅射制备ITO膜及光电性能研究   总被引:1,自引:0,他引:1  
室温条件下,在玻璃衬底上,采用直流磁控溅射法制备了ITO膜.研究了溅射压强,氧流量和溅射功率等工艺参数对薄膜光电性能的影响.结果表明当Ar流量为44.2 sccm和溅射时间20 min等参数不变时,溅射气压0.7 Pa,氧流量0.62 sccm和溅射功率130 W为最佳工艺条件.并得到了电阻率5.02×10-4 Ω·cm,在可见光区平均透过率80%以上ITO薄膜.  相似文献   

2.
磁控溅射制备ITO薄膜光电性能的研究   总被引:1,自引:0,他引:1  
采用直流磁控溅射方法在玻璃基底上制备了ITO薄膜.分别用分光光度计和四探针仪测试了所制备ITO薄膜在可见光区域内的透过率和电阻率,研究了溅射气压、氧氩流量比和溅射功率三个工艺参数对ITO薄膜光电性能的影响.研究结果表明,制备ITO薄膜的最佳工艺参数为:溅射气压0.6 Pa,氧氩流量比1:40,溅射功率108 W.采用此工艺参数制备的ITO薄膜在可见光区平均透过率为81.18%,薄膜电阻率为8.9197×10-3Ω·cm.  相似文献   

3.
磁控溅射制备增透ITO薄膜及其性能研究   总被引:4,自引:0,他引:4  
用射频磁控溅射法在低温下制备了光电性能优良的ITO(In2O3:SnO2=1:1)薄膜。质量流量计调节氩气压强PAr为0.2~3.0Pa,氧流量fO2为0~10sccm,并详细探讨了溅射时PAr和fO2变化对ITO薄膜光学性能的影响。结果表明:fO2的改变引起薄膜中氧空位浓度变化而影响ITO薄膜折射率n;fO2对ITO靶材表面的溅射阀值和对Ar 散射而改变溅射速率。衬底表面粗糙度对ITO薄膜的折射率测量准确性有较大影响。PAr为0.8Pa,fO2为2.4sccm,薄膜厚度为241.5nm时,nmin=1.97,最大透过率为89.4%(包括玻璃基体),方阻为75.9?/□,电阻率为8.8×10-4?·cm。AFM分析表明薄膜表面针刺很少,表面平整(RMS=3.04nm)。  相似文献   

4.
We investigate the growth and structure properties of Mg:C thin films. The films are prepared using a dc magnetron sputtering discharge where the electrical resistance over the films is monitored during growth in-situ with a four point probe setup. The structural properties of the films are investigated using X-ray diffraction measurements and the elemental composition and binding in the films is determined using elastic recoil detection analysis and X-ray photoelectron spectroscopy. The results show that during co-sputtering the carbon flux influences the initial stages of the film growth. The films are made of polycrystalline magnesium grains embedded in a carbon network, the size of which depends on the carbon content, but amorphous phases cannot be excluded. The XPS measurements show the presence of carbidic carbon whereas X-ray measurements find no Mg:C phases. The overall stability of the films is found to depend on the carbon content, where stable films capped with a 14 nm Pd layer cannot be obtained with carbon content above 18%.  相似文献   

5.
6.
本文对离子束辅助磁控溅射低温沉积的ITO薄膜进行了研究,重点考察了辅助离子束能量对ITO薄膜的光电性能和晶体结构的影响。结果表明:当A r/O2辅助离子束能量为900 eV左右时能够有效改善ITO薄膜的光电性能,在从非晶到多晶的转变过程中ITO薄膜具有较低的电阻率。在聚碳酸酯(PC)基片上制备了平均可见光透过率81.0%、电阻率为5.668×10-4ohm cm、结构致密且附着力良好的ITO薄膜,基片无变形。  相似文献   

7.
8.
Tin-doped indium oxide (ITO) films were deposited by RF magnetron sputtering on TiO2-coated glass substrates (the TiO2 layer is usually called seed layer). The properties of ITO films prepared at a substrate temperature of 300 °C on bare and TiO2-coated glass substrates have been analyzed by using X-ray diffraction, atomic force microscope, optical and electrical measurements. Comparing with single layer ITO film, the ITO film with a TiO2 seed layer of 2 nm has a remarkable 41.2% decrease in resistivity and similar optical transmittance. The glass/TiO2 (2 nm)/ITO film achieved shows a resistivity of 3.37 × 10−4 Ω cm and an average transmittance of 93.1% in the visible range. The glass/TiO2 may be a better substrate compared with bare glass for depositing high quality ITO films.  相似文献   

9.
Li-doped p-type ZnO thin films were grown by using radio frequency magnetron sputtering. In our experiment, ZnO targets were fabricated by using the Li-doped ZnO powders that had been synthesized by glycine (urea)-nitrate combustion process. The structural characteristics of ZnO thin films were examined by XRD and SEM. The results showed that ZnO films possess a good crystalline with c-axis orientation, uniform thickness and dense surface. Current-voltage properties of p-ZnO:Li/n-Si structure had been examined in an effort to delineate the carrier type behavior in ZnO semiconductor. p-ZnO:Li/n-Si heterojunctions displayed rectifying behavior. As a result I-V measurements exhibited a polarity consistent with the Li-doped ZnO being p-type.  相似文献   

10.
11.
High rate deposition of ITO thin films at a low substrate temperature was attempted by using a facing target sputtering (FTS) system. Deposition rate as high as 53 nm/min was realized on polycarbonate film substrate of 80-μm thickness. When the film was deposited at a deposition rate above 80 nm/min, polycarbonate film substrate was thermally damaged. The film deposited by FTS has much smaller compressive film stress than the film deposited by conventional magnetron sputtering. The film stress was reduced significantly by increasing the sputtering gas pressure and stress-free films can be obtained by adjusting the sputtering gas pressure. This may be mainly caused by the fact that bombardment by high energy negative oxygen ions to substrate surface during deposition can be completely suppressed in the FTS. Film structure and electrical properties changed little with substrate position, and uniform films were obtained by the FTS.  相似文献   

12.
Growth of thin Ag films produced by radio frequency magnetron sputtering   总被引:1,自引:0,他引:1  
Thin Ag films in the thickness range D = 14–320 nm were deposited by radio frequency magnetron sputtering on glass substrates at room temperature inside a vacuum chamber with base pressure of about 5 × 10− 6 Pa. The growth of the films was studied via X-ray diffraction and atomic force microscopy experiments. The two techniques are complementary and give us the opportunity to study the surface roughness, the statistical distribution and the average value of the grain size, as well as the texture of the samples. It is shown that the film roughness increases negligibly within the first 60 atomic layers of growth. The thicker films (D 300 nm) develop a nanocrystalline structure with a root mean square roughness of about 2.5 nm. The grain size evolves linearly with the thickness from 9.4 nm at D = 54 nm to 31.6 nm at D = 320 nm.  相似文献   

13.
Ellipsometry study of InN thin films prepared by magnetron sputtering   总被引:2,自引:0,他引:2  
Indium nitride (InN) thin films have been deposited on Si(1 0 0) substrates at temperature of 100–400 °C by reactive radio frequency (RF) magnetron sputtering. We measured the ellipsometric spectra of the InN film samples, and obtained the optical constants for the wavelength range of 410–1100 nm. The absorption edge of the InN films is 1.85–1.90 eV. The thicknesses of various InN films are found to be dependent on the substrate temperature.  相似文献   

14.
Fluoride thin films for 193-nm lithography were deposited by three different types of RF magnetron sputtering. Systematic analysis of the relation between optical properties and deposition conditions of these thin films is discussed.  相似文献   

15.
Hard, nanocomposite aluminum magnesium boride thin films were prepared on Si (100) substrates with a three target magnetron sputtering system. The films were characterized by X-ray diffraction, atomic force microscope, electron micro-probe, Fourier transform infrared spectroscopy and nanoindentation. The results show that the maximum hardness of the as-deposited films is about 30.7 GPa and these films are all X-ray amorphous with smooth surfaces. The influences of substrate temperature and boron sputtering power on the quality of the films are discussed. From the results of this work, magnetron sputtering is a promising method to deposit Al-Mg-B thin films.  相似文献   

16.
Highly transparent, conductive Sn-doped In2O3 (ITO) thin films with a characteristic root mean square surface roughness RMS below 1 nm were obtained from deposition of amorphous ITO and subsequent annealing treatment. ITO thin films with ultra flat surface were produced by (i) controlling crystallization mechanisms (nucleation and growth) of amorphous ITO through optimization of hydrogen content and temperature profile during sputtering and annealing process and (ii) preventing formation of agglomerated atoms/clusters in the gas phase and hence reducing large surface particles through fine tuning the sputtering rate and process pressure. Characterization of the coatings revealed specific resistivities below 2.5 × 10− 4 Ω cm and transparencies above 90% in the visible range of light.  相似文献   

17.
Thin films of Cu2Te were deposited, at room temperature, on glass substrates by magnetron sputtering from independent Cu and Te sources. This work presents the effect of annealing temperature on the optical, structural, and electrical properties of sputtered Cu2Te films. Annealing above 300 °C resulted in stoichiometric and near stoichiometric Cu2Te phases, whereas temperatures above 400 °C yielded films with single Cu2Te phase. In contrast, annealing at temperatures of 250 °C and below resulted in mixed phases of CuTe, Cu7Te5, Cu1.8Te, and Cu2Te. Analyses of transmittance and reflectance measurements for Cu2Te indicate that photon absorption occurs via indirect band transitions for incident photons with energy above the band gap energy and free carrier absorption below the band gap energy. The determined indirect band gap was 0.90 eV and its associated phonon energy was 0.065 eV. Optical phonon scattering was identified as the mechanism through which the momentum is conserved during absorption by free carriers. Electrical measurements show p-type conductivity and highly degenerate semiconducting behavior with a hole carrier concentration p = 5.18 × 1021 cm− 3.  相似文献   

18.
Indium tin oxide (ITO) films were deposited on glass substrates by rf magnetron sputtering using a ceramic target (In2O3-SnO2, 90-10 wt%) without extra heating. The post annealing was done in air and in vacuum, respectively. The effects of annealing on the structure, surface morphology, optical and electrical properties of the ITO films were studied. The results show that the increase of the annealing temperature improves the crystallinity of the films, increases the surface roughness, and improves the optical and electrical properties. The transmittance of the films in visible region is increased over 90% after the annealing process in air or in vacuum. The resistivity of the films deposited is about 8.125×10−4 Ω cm and falls down to 2.34×10−4 Ω cm as the annealing temperature is increased to 500°C in vacuum. Compared with the results of the ITO films annealed in air, the properties of the films annealed in vacuum is better.  相似文献   

19.
The preparation of very thin indium tin oxide (ITO) films with extremely high transparency and suitable resistivity, as well as resistivity stability for long term use, is described. In order to obtain these properties, amorphous suboxide films were first prepared and then annealed. Suboxide films with a thickness of 20 to 30 nm were prepared on PET film and glass substrates at a temperature of 60 °C using In2O3---SnO2 targets with a SnO2 content of 0 to 10 wt% by DC magnetron sputtering in a pure argon gas atmosphere. The films were annealed at a temperature of 150 °C for 1 to 100 h in air. The resistivity of films on PET films was, depending on the SnO2 content, on the order of 10−3 ω cm. An average transmittance above 97% in the visible wavelength range and a resistivity of about 4 × 10−3 ω cm, as well as resistivity stability, were attained in ITO films with a SnO2 content of about 1 wt% prepared on PET films by the low-temperature process. It is thought that these properties result from crystallization which occurred during the annealing, duration up to about 25 h.  相似文献   

20.
A systematically prepared set of ITO layers for solar cell applications has been analyzed by spectroscopic variable angle ellipsometry in order to trace the dependence of free carriers’ distribution along the film depth as a function of film thickness as well as its change upon annealing. Samples were deposited on silicon substrates with various thicknesses in steps of approximately 10–20 nm. This set was duplicated and these samples were annealed, so that for each thickness an as-deposited and an annealed sample is available. Conventionally measured electrical conductivity and morphological properties (AFM measurements) of the films have been compared with the optical constants’ inhomogeneity, i.e. material properties along the film thickness modelled by variable-angle spectroscopic ellipsometry. The obtained results show that the optical as well as electrical properties of thin ITO films prepared by pulsed DC sputtering are depth dependent. For the deposition conditions used a well-determined reproducible non-uniform distribution of free carriers within the film thickness was determined. In particular it has been found that the majority of free carriers in as-deposited ultra-thin ITO films is concentrated at sample half-depth, while their distribution becomes asymmetric for the thicker films, with a maximum located at approximately 40 nm depth. The distribution of free carriers in annealed samples is qualitatively different from that of as-deposited layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号