首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the influence of oxygen partial pressure (OPP; 250 mTorr–1 × 10?5 Torr) and Fe doping (2 and 4 at.%) on structural and electrical properties of TiO2 thin films on LaAlO3 substrates. X-ray photoelectron spectroscopy suggests that Fe is not in metal cluster form. It is found that the evolution of the three phases; anatase, rutile and brookite of TiO2 as well as the magneli phase (TinO2n?1) strongly depends on the OPP and Fe doping concentration. All the films grown at 250 mTorr show insulating behavior, whereas films grown at 1 × 10?2 and 1 × 10?4 Torr reveal high temperature metallic to low temperature semiconducting transition. Interestingly, films deposited at 1 × 10?5 Torr reveal charge ordering, which is contributed to the magneli phase of TiO2. The present study suggests that functionality of TiO2 thin film based devices can be tuned by properly selecting the OPP and dopant concentration.  相似文献   

2.
《Materials Letters》2007,61(4-5):937-941
The (Pb, La)TiO3 (PLT) ferroelectric thin films with and without a special buffer layer of PbOx have been deposited on Pt/Ti/SiO2/Si(100) substrates by RF magnetron sputtering technique at room temperature. The microstructure and the surface morphology of the films annealed at 600 °C for 1 h have been investigated by X-ray diffraction (XRD) and atomic force microscope (AFM). The surface roughness of the PLT thin film with a special buffer layer was 4.45 nm (5 μm × 5 μm) in comparison to that of 31.6 nm (5 μm × 5 μm) of the PLT thin film without a special buffer layer. Ferroelectric properties such as polarization hysteresis loop (PV loop) and capacitance–voltage curve (CV curve) of the films were investigated. The remanent polarization (Pr) and the coercive field (Ec) are 21 μC/cm2 and 130 kV/cm respectively, and the pyroelectric coefficient is 2.75 × 10 8 C/cm2 K for the PLT film with a special buffer layer. The results indicate that the (Pb, La)TiO3 ferroelectric thin films with excellent ferroelectric properties can be deposited by RF magnetron sputtering with a special buffer layer.  相似文献   

3.
Fluorine-doped ZnO transparent conductive thin films were successfully deposited on glass substrate by radio frequency magnetron sputtering of ZnF2. The effects of rapid thermal annealing in vacuum on the optical and electrical properties of fluorine-doped ZnO thin films have been investigated. X-ray diffraction spectra indicate that no fluorine compounds, such as ZnF2, except ZnO were observed. The specimen annealed at 500 °C has the lowest resistivity of 6.65 × 10? 4 Ω cm, the highest carrier concentration of 1.95 × 1021 cm? 3, and the highest energy band gap of 3.46 eV. The average transmittance in the visible region of the F-doped ZnO thin films as-deposited and annealed is over 90%.  相似文献   

4.
《Materials Letters》2006,60(17-18):2059-2065
Thin films of (Bi0.5Sb0.5)2Te3 of different thickness were deposited on glass substrate by the flash evaporation method in a vacuum of 1 × 10 5 Torr. X-ray diffraction and transmission electron microscope analysis indicates that these films are polycrystalline even in the as-deposited state and the post-deposition annealing leads to grain growth. Electrical resistivity studies were carried out on these films as a function of temperature (300– 450 K) and film thickness (450–2000 Å). Temperature dependence of electrical resistivity shows that (Bi0.5Sb0.5)2Te3 films are semiconducting. It is found that electrical conduction activation energy decreases with increase of film thickness and this observation is explained based on the Slater model. Thickness dependence of electrical resistivity is analyzed using the effective mean free path model of size effect with perfect diffuse scattering. This analysis leads to the evaluation of the important physical parameters i.e., mean free path and bulk resistivity of hypothetical bulk.  相似文献   

5.
《Optical Materials》2007,29(12):1405-1411
Highly transparent and conducting indium oxide thin films are prepared on glass substrates from precursor solution of indium chloride. These films are characterized by X-ray diffraction, scanning electron microscopy and optical transmission. The preferential orientation of these films is found to be sensitive to deposition parameters. A comparative study has been made on the dependence on the thickness of the film on substrate temperatures with aqueous solution and 1:1 C2H5OH and H2O as precursors. Films deposited at optimum conditions have 167 nm thickness and exhibited a resistivity of 2.94 × 10−4 Ω m along with transmittance better than 82% at 550 nm. The analytical expressions enabling the derivation of the optical constants of these films from their transmission spectrum only have successfully been applied. Finally, the refractive index dispersion is discussed in terms of the single-oscillator Wemple and Didomenico model.  相似文献   

6.
We report, the effect of air annealing on solar conversion efficiency of chemically grown nanostructured heterojunction thin films of CdS/CuInSe2, such 100, 200 and 300 °C air annealed thin films characterized for physicochemical and optoelectronic properties. XRD pattern obtained from annealed thin films confirms tetragonal crystal geometry of CuInSe2 and an increase in average crystallite size from 16 to 32 nm. An EDAX spectrum confirms expected and observed elemental composition in thin films. AFM represents high energy induced grain growth and agglomeration due to polygonization process. Increase in optical absorbance strength and decrease in energy band gap from 1.36 to 1.25 eV is observed. Increase in charge carrier concentration from 2 × 1016 to 8 × 1017 cm?3 is observed as calculated from Hall effect measurements and an enhancement in solar conversion efficiency from 0.26 to 0.47% is observed upon annealing.  相似文献   

7.
《Materials Letters》2006,60(9-10):1224-1228
Pure and 2 mol% Mn doped Ba0.6Sr0.4TiO3 (BST) thin films have been deposited on La0.67Sr0.33MnO3 (LSMO) coated single-crystal (001) oriented LaAlO3 substrates using pulsed-laser deposition technique. The bilayer films of BST and LSMO were epitaxially grown in pure single-oriented perovskite phases for both samples, and an enhanced crystallization effect in the BST film was obtained by the addition of Mn, which were confirmed by X-ray diffraction (XRD) and in situ reflective high energy electron diffraction (RHEED) analyses. The dielectric properties of the BST thin films were measured at 100 kHz and 300 K with a parallel-plate capacitor configuration. The results have revealed that an appropriate concentration acceptor doping is very effective to increase dielectric tunability, and to reduce loss tangent and leakage current of BST thin films. The figure-of-merit (FOM) factor value increases from 11 (undoped) to 40 (Mn doped) under an applied electric field of 200 kV/cm. The leakage current density of the BST thin films at a negative bias field of 200 kV/cm decreases from 2.5 × 10 4 A/cm2 to 1.1 × 10 6 A/cm2 by Mn doping. Furthermore, a scanning-tip microwave near-field microscope has been employed to study the local microwave dielectric properties of the BST thin films at 2.48 GHz. The Mn doped BST film is more homogeneous, demonstrating its more potential applications in tunable microwave devices.  相似文献   

8.
Zhong Zhi You  Gu Jin Hua 《Materials Letters》2011,65(21-22):3234-3236
Gallium-doped zinc oxide (ZnO:Ga) films were prepared on glass substrates by RF magnetron sputtering. The effect of growth temperature on microstructure, optical and electrical properties of the films was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible spectrophotometer and four-point probe. The results show that all the films are polycrystalline and (002) oriented, and that the growth temperature significantly affects the microstructure and optoelectrical properties of the films. The film deposited at 670 K has the largest grain size of 71.9 nm, the lowest resistivity of 8.3 × 10? 4 Ω?cm and the highest figure of merit of 2.1 × 10? 2 Ω? 1. Furthermore, the optical energy gaps and optical constants were determined by optical characterization methods. The dispersion behavior of the refractive index was also studied using the Sellmeir's dispersion model and the oscillator parameters of the films were obtained.  相似文献   

9.
Polycrystalline titania and Nb:TiO2 thin films were deposited by RF magnetron sputtering. The influence of post-deposition annealing in vacuum and hydrogen atmosphere on the structure, morphology, oxidation states and optical properties was studied by X-ray diffraction, atomic force microscopy, XPS and UV–VIS spectroscopy. The heat treatment of titanium dioxide thin films in vacuum and H2 atmosphere induces structural and morphological changes. The band gap narrowing was observed for the transparent as-deposited Nb:TiO2 films, while annealing at 420 °C in H2 atmosphere resulted in an enhancement of the electrical conductivity. Further on, TiO2/p-CdTe photovoltaic devices with efficiency of 1.8% were fabricated and their characteristic ‘enhancement’ is discussed.  相似文献   

10.
Multiferroic BFO/PZT multilayer films were fabricated by spin-coating method on the (1 1 1)Pt/Ti/SiO2/Si substrate alternately using PZT(30/70), PZT(70/30) and BFO alkoxide solutions. The structural and ferroelectric properties were investigated for uncooled infrared detector applications. The coating and heating procedure was repeated six times to form BFO/PZT multilayer films. All films showed the typical XRD patterns of the perovskite polycrystalline structure without presence of the second phase such as Bi2Fe4O3. The thickness of BFO/PZT multilayer film was about 200–220 nm. The ferroelectric properties such as dielectric constant, remnant polarization and pyroelectric coefficient were superior to those of single composition BFO film, and those values for BFO/PZT(70/30) multilayer film were 288, 15.7 μC/cm2 and 9.1 × 10?9 C/cm2 K at room temperature, respectively. Leakage current density of the BFO/PZT(30/70) multilayer film was 3.3 × 10?9 A/cm2 at 150 kV/cm. The figures of merit, FV for the voltage responsivity and FD for the specific detectivity, of the BFO/PZT(70/30) multilayer film were 6.17 × 10?11 Ccm/J and 6.45 × 10?9 Ccm/J, respectively.  相似文献   

11.
Nanostructured tanium dioxide (TiO2) films were implanted with N+ at 40 keV and ion dose range of 1016/cm2 to 4 × 1016/cm2, and annealed at temperatures between 673 and 973 K. From XRD and TEM analyses it was found that the anatase phase of TiO2 remained stable up to annealing temperature of 973 K. The samples showed narrower XRD peaks corresponding to larger mean-grain sizes comparing to the un-implanted TiO2 samples. The SIMS depth profile showed a peak of nitrogen concentration at about 60 nm beneath the film surface and this was confirmed using the SRIM-2003 program for simulating ion beam interactions with matter. The absorption spectra of the films as measured using spectrophotometer were found to shift toward longer wavelengths with the increase of ion dose.  相似文献   

12.
For dye-sensitized solar cells application, in this study, we have synthesized TiO2 thin films at deposition temperature in the range of 300–750 °C by metalorganic chemical vapor deposition (MOCVD) method. Titanium(IV) isopropoxide, {TIP, Ti(OiPr)4} and Bis(dimethylamido)titanium diisopropoxide, {BTDIP, (Me2N)2Ti(OiPr)2} were used as single source precursors that contain Ti and O atoms in the same molecule, respectively. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase were deposited on Si(1 0 0) with TIP at temperature as low as 450 °C. XRD and TED data showed that below 500 °C, the TiO2 thin films were dominantly grown in the [2 1 1] direction on Si(1 0 0), whereas with increasing the deposition temperature to 700 °C, the main film growth direction was changed to [2 0 0]. Above 700 °C, however, rutile phase TiO2 thin films have only been obtained. In the case of BTDIP, on the other hand, only amorphous film was grown on Si(1 0 0) below 450 °C while a highly oriented anatase TiO2 film in the [2 0 0] direction was obtained at 500 °C. With further increasing deposition temperatures over 600 °C, the main film growth direction shows a sequential change from rutile [1 0 1] to rutile [4 0 0], indicating a possibility of getting single crystalline TiO2 film with rutile phase. This means that the precursor together with deposition temperature can be one of important parameters to influence film growth direction, crystallinity as well as crystal structure. To investigate the CVD mechanism of both precursors in detail, temperature dependence of growth rate was also carried out, and we then obtained different activation energy of deposition to be 77.9 and 55.4 kJ/mol for TIP and BTDIP, respectively. Also, we are tested some TiO2 film synthesized with BTDIP precursor to apply dye-sensitized solar cell.  相似文献   

13.
To investigate the isomerization process of the disperse red 1 (DR1) doped TiO2/ormosil thin film, both the photo-isomerization and the thermal isomerization of the thin films were observed as a change of the absorption spectrum. Under a real-time heat treatment, the change of the linear refractive index shows a thermal stable working temperature range below Tg. The optical bistability (OB) effect of the DR1 doped thin films based on different matrices was studied and measured at a wavelength of 532 nm. Results indicate that the TiO2/ormosils based thin film presents a better OB-gain than that of the poly (methyl methacrylate) (PMMA) based thin film due to its more rigid network structure. Moreover, it is also noted that higher titanium content is helpful for enhancing the OB-gain of the as-prepared hybrid thin films.  相似文献   

14.
Bio-nanocomposite films based on chitosan and manganese oxide nanoflake have been fabricated via the layer-by-layer (LBL) self-assembly technique. UV–vis absorption spectra showed that the subsequent growth of the nanocomposite film was regular and highly reproducible from layer to layer. X-ray photoelectron spectroscopy (XPS) spectra confirmed the incorporation of chitosan and manganese oxide nanoflake into the films. Scanning electron microscopy (SEM) images revealed that the nanocomposite film had a continuous surface and a layered structure. A sensitive hydrogen peroxide (H2O2) amperometric sensor was fabricated with the chitosan–manganese oxide nanoflake nanocompoite film. The sensor showed a rapid and linear response to H2O2 over the range from 2.5 × 10? 6 to 1.05 × 10? 3 M, with a sensitivity of 0.038 A M? 1 cm? 2.  相似文献   

15.
《Vacuum》1999,52(1-2):115-120
Films prepared by reactive magnetron sputtering always present some structural and morphological heterogeneities.In this work, optical parameters, n(λ), k(λ) and E0, of TiO2 thin films were obtained, using only optical transmittance measurements. Films were described according to Abèles's model. Using a mono-oscillator type dispersion curve for the refractive index and a Lorentzian type curve for the absorption coefficient, we were able to demonstrate that the films were optically equivalent to a porous layer, with some dispersion in film thickness.The detailed analysis of the experimental transmittance data, fitted between 330 nm to 2200 nm, also enabled us to correlate the effective refractive index of each film with its deposition conditions.  相似文献   

16.
We report the structural evolution and optical properties of lanthanum doped lead zirconate titanate (PLZT) thin films prepared on Pt/TiO2/SiO2/Si substrates by chemical solution deposition. X-ray diffraction demonstrates the post-deposition annealing induced crystallization for PLZT films annealed in a temperature (Ta) range of 550–750 °C. PLZT films annealed at higher temperature exhibit polycrystalline structure along with larger grain size. Optical band gap (Eg) values determined from UV–visible spectroscopy and spectroscopic ellipsometry (SE) for PLZT films were found to be in the range of 3.5–3.8 eV. Eg decreases with increasing Ta. The optical constants and their dispersion profiles for PLZT films were also determined from SE analyses. PLZT films show an index of refraction in the range of 2.46–2.50 (λ = 632.8 nm) with increase in Ta. The increase in refractive index at higher Ta is attributed to the improved packing density and crystallinity with the temperature.  相似文献   

17.
Single-, bi- and tri-layered films of Ti–TiO2 system were deposited by d.c. pulsed magnetron sputtering from metallic Ti target in an inert Ar or reactive Ar + O2 atmosphere. The nominal thickness of each layer was 50 nm. The chemical composition and its depth profile were determined by Rutherford backscattering spectroscopy (RBS). Crystallographic structure was analysed by means of X-ray diffraction (XRD) at glancing incidence. X-ray reflectometry (XRR) was used as a complementary method for the film thickness and density evaluation. Modelling of the optical reflectivity spectra of Ti–TiO2 thin films deposited onto Si(1 1 1) substrates provided an independent estimate of the layer thickness. The combined analysis of RBS, XRR and reflectivity spectra indicated the real thickness of each layer less than 50 nm with TiO2 film density slightly lower than the corresponding bulk value. Scanning Electron Microscopy (SEM) cross-sectional images revealed the columnar growth of TiO2 layers. Thickness estimated directly from SEM studies was found to be in a good agreement with the results of RBS, XRR and reflectivity spectra.  相似文献   

18.
We synthesized a boronic acid-appended azobenzene dye (BA) and attached it to poly(ethyleneimine) (polyBA) for studying its sugar response. The addition of d-glucose induced a significant change in the UV–visible absorption spectra of the polyBA solution. The binding constants for d-glucose (Kglu) and d-fructose (Kfru) were calculated to be 54 M? 1 and 110 M? 1, respectively. The selectivity for d-glucose was higher in polyBA as compared with that of monomeric BA (Kglu = 1.2 M? 1, Kfru = 17 M? 1). We also fabricated multilayered films composed of polyBA and polyanions {poly(vinyl sulfate) (PVS), carboxymethylcellulose (CMC)} using a layer-by-layer deposition technique. In (PVS/polyBA)10 films, the affinity for d-glucose was relatively low (Kglu = 1.7 M? 1, Kfru = 28 M? 1). In contrast, (CMC/polyBA)5 films showed a high affinity for d-glucose (Kglu = 18 M? 1, Kfru = 42 M? 1). The loosely packed structure of the (CMC/polyBA)5 film and the suitable chemical structures of CMC probably led to a high affinity for d-glucose.  相似文献   

19.
《Materials Research Bulletin》2006,41(11):2018-2023
Composite thin films Au/BaTiO3 comprising nanometer-sized gold particles embedded in BaTiO3 matrices were synthesized on MgO(1 0 0) substrates by co-depositing Au and BaTiO3 targets using pulsed laser deposition technique. The nanostructure of the films and the size distributions of the Au particles were analyzed by high-resolution transmission electron microscopy. Crystal lattice fringes from the Au nanocrystals and BaTiO3 matrices were observed. The nonlinear optical properties of the Au/BaTiO3 films were measured using z-scan method at the wavelength of 532 nm with a laser duration of 10 ns. The nonlinear refractive index n2 and the nonlinear absorption coefficient β were determined to be 2.72 × 10−6 esu and −1.1 × l0−6 m/W, respectively.  相似文献   

20.
In the present report synthesis of CoS thin films was carried out by a modified liquid phase chemical growth process. Dark green coloured CoS thin films with hexagonal wurtzite polycrystalline structure and average grain size of ≈ 15 nm were deposited. Surface morphology reveals a randomly oriented network of elongated thread like grains. The absorption coefficient of the CoS thin film is high (α  104–105 cm? 1) and a direct band gap of 1.13 eV has been observed. n-type conduction is found in the deposited films which can be attributed to the lack of stoichiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号