首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A life-size composite brake disc was produced from Si, carbon–carbon composite, copper, and phenol resin. The disc had an outer radius Ø380, inner radius Ø180, and thickness of 36 mm. Chopped carbon fibers were used to reinforce frictional and structural layers. To obtain a preform of each layer, resin and carbon-fibers were mixed and hot-pressed. The preforms were pyrolyzed, and bonded by hot pressing. Finally Si and Cu infiltration in vacuum atmosphere was carried out to obtain a C/C–SiC–Cu x Si y composite brake disc. The density of the disc was 2.17 g/cm3. The bending strength was 61 MPa. The heat transfer coefficients in vertical and horizontal directions were 30.7, and 85.2 W/m-°C at 25°C, respectively. Friction coefficients of the C/C–SiC–Cu x Si y brake disc were more stable than those of C/C–SiC brake discs. X-ray diffraction analysis showed that Cu formed a compound, Cu3Si.  相似文献   

2.
T. Polcar  M. Evaristo  M. Stueber  A. Cavaleiro 《Wear》2009,266(3-4):393-397
Transition metal dichalcogenides belong to the more developed class of materials for solid lubrication. However, the main limitation of these materials is the detrimental effect of air humidity causing an increase in the friction. In previous works, molybdenum diselenide has been shown to be a promising coating retaining low friction even in very humid environment. In this study, Mo–Se–C films were deposited by sputtering from a C target with pellets of MoSe2. Besides the evaluation of the chemical composition, the structure, the morphology, the hardness and the cohesion/adhesion, special attention was paid to the tribological characterization.The C content varied from 29 to 68 at.% which led to a progressive increase of the Se/Mo ratio. As a typical trend, the hardness increases with increasing C content. The coatings were tested at room temperature with different air humidity levels and at temperatures up to 500 °C on a pin-on-disc tribometer. The friction coefficient of Mo–Se–C coatings increased with air humidity from ~0.04 to ~0.12, while it was as low as 0.02 at temperature range 100–250 °C. The coatings were very sensitive to the elevated temperature being worn out at 300 °C due to adhesion problems at coating–titanium interface.  相似文献   

3.
A series of high carbon Fe–Cr–C hardfacing alloys were produced by gas tungsten arc welding (GTAW). Chromium and graphite alloy fillers were used to deposit hardfacing alloys on ASTM A36 steel substrates. Depending on the four different graphite additions in these alloy fillers, this research produced hypereutectic microstructures of Fe–Cr phase and (Cr,Fe)7C3 carbides on hard-facing alloys. The microstructural results indicated that primary (Cr,Fe)7C3 carbides and eutectic colonies of [Cr–Fe+(Cr,Fe)7C3] existed in hardfacing alloys. With increasing the C contents of the hardfacing alloys, the fraction of primary (Cr,Fe)7C3 carbides increased and their size decreased. The hardness of hardfacing alloys increased with fraction of primary (Cr.Fe)7C3 carbides. Regarding the abrasive characteristics, the wear resistance of hardfacing alloys were related to the fraction of primary (Cr,Fe)7C3 carbides. The wear mechanism was also dominated by the fraction of primary (Cr,Fe)7C3 carbides. Fewer primary carbides resulted in continuous scratches worn on the surface of hardfacing alloy. In addition, the formation of craters resulted from the fracture of carbides. However, the scratches became discontinuous with increasing fraction of the carbides. More primary carbides can effectively prevent the eutectic colonies from the damage of abrasive particles.  相似文献   

4.
The effects of nickel and carbon concentrations on the wear resistance of Fe–xNi–yC (x = 14–20 wt.%, y = 0.6–1.0 wt.%) were investigated with respect to strain energy initiation of the martensitic transformation and hardness. The strain energy needed to initiate the martensitic transformation increased with increasing carbon and nickel concentrations, except in 1.0 wt.% C alloys. The wear resistance of the material decreased with increasing carbon concentration up to 0.9 wt.% C. This effect is most likely due to decrement of the martensite volume fraction with increasing carbon concentration induced by the incremental strain energy required to begin the martensitic transformation. In the case of 1.0 wt.% C, the improved wear resistance may be due to carbide precipitation.  相似文献   

5.
The effects of Ni and Mn concentrations and also the impact velocity on the solid particle erosion behavior of Fe?C12Cr?C0.4C?CxNi/Mn (x?=?5 and 10) alloys were investigated with respect to strain-induced martensitic transformation. The critical strain energy (CSE), which is defined as the energy required to initiate the martensitic transformation increased with increasing Ni and Mn concentrations. As the impact velocity decreased, the solid particle erosion resistance of the low CSE alloy improved compared to that of the high CSE alloy under the given ranges of impingement angles and impact velocities. This result was most likely due to an increase in the volume fraction of martensite that formed during the solid particle erosion test in the low CSE alloy when the impact velocity was decreased.  相似文献   

6.
The effect of a strain-induced martensitic transformation on the cavitation erosion resistance and incubation time of Fe–10Cr–10Ni–xC (x = 0.3, 0.4, 0.5, and 0.6 wt%) austenitic steels has been studied. As the carbon concentration increased, mass loss in the alloys also increased, while the incubation period and the amount of transformed martensite decreased. In addition, the martensite volume fraction increased with increasing testing time and reached a saturation point for each test alloy. After the saturation point was reached, the martensite volume fraction did not change throughout the remainder of the test, even though the transformed martensite phase was removed. This result indicates that new martensite phases were formed immediately after the removal of the previously formed martensite. Martensitic transformation exerts significant effects on wear resistance and incubation time by steadily absorbing the cavity collapse energy.  相似文献   

7.
8.
A series of tests on arc rate, friction coefficient, and wear rate of electrical current collectors sliding against overhead contact wires under different conditions was carried out on a high-speed friction and wear testing machine with a pin-on-disc configuration. The worn surface morphology and composition were examined using a scanning electron microscope and energy dispersion spectrum analyzer, respectively. The effects of current, velocity, and load on the arc rate, friction coefficient, and wear rate of C/C composites/QCr0.5 couples were investigated, and the influence mechanism of test parameters on C/C composites was explained. It is concluded that the wear rate increases with an increase in current and velocity and has a decreasing trend with the increase in load. The friction coefficient increases with an increase in velocity and load. The arc rate of C/C composites/QCr0.5 couples increases with an increase in current and velocity. Under the condition of the same current and velocity, when the load is 70 N, the arc rate is the lowest.  相似文献   

9.
Abstract

This paper describes the multifactor based experiments that are applied to investigate the dry sliding wear system of aluminium matrix alloy (AA6351) with 5 wt-% silicon carbide (SiC), 5 wt-% and 10 wt-% of boron carbide (B4C) reinforced metal matrix composites (MMCs). Stir casting route was adopted to prepare the composites and the tribological experiments were carried out on pin-on-disc type wear machine. The effects of parameters like applied load, sliding velocity, wt-% of B4C on the dry sliding wear and frictional coefficient of aluminium MMCs using grey relational analysis (GRA) are reported. The orthogonal array with L9 layout and analysis of variance were used to investigate the influence of the parameters. It is observed that the dry sliding friction and wear behaviour of the composites are influenced by the applied load, sliding velocity and wt-% of B4C with a contribution of 60·82%, 21·72% and 14·28% respectively. The optimal design parameters were found by grey relational grade and a good agreement was observed for 95% level of confidence.  相似文献   

10.
Tribochemically active TiCS coatings are nanocomposite coatings containing a S-doped titanium carbide, from which S can be released in a tribological contact. This work studies tribochemical reactions between a TiCS coating and various counter surface materials, and their effect on the tribological performance. Tribological tests were performed in a ball-on-disc set-up, using balls of five different materials as sliding partners for the coating: 100Cr6 steel, pure W, WC, 316-L steel and Al2O3. For W balls, a WS2 tribofilm was formed, leading to low friction (down to µ = 0.06). Furthermore, increasing normal load on the W balls was found to lead to a strong decrease in µ and earlier formation of the low-friction WS2 tribofilm. Similar WS2 and MoS2 tribofilms were, however, not formed from WC- and Mo-containing 316-L balls. The performance when using WC and Al2O3 balls was significantly worse than for the two steel balls. It is suggested that this is due to sulphide formation from Fe, analogous to formation of anti-seizure tribofilms from S-containing extreme pressure additives and steel surfaces. The tribochemical activity of TiCS coatings, with the possibility of S release, is thus beneficial not only for pure W counter surfaces, but also for Fe-based sliding partners.  相似文献   

11.
The work presents the results of investigating the influence of the ion concentration in the WC?Co electrode materials on the structure and properties of the coatings deposited by electrospark deposition (ESD) on low-carbon steel. It has also been shown that iron concentration affects the character of mass transfer and thickness of the deposited coating. The phase composition, roughness, and wear resistance of the obtained coatings were studied under the conditions of the dry microabrasive rubbing. The increased iron concentration in the electrode materials was found to intensify the decarbidization of tungsten carbide at ESA.  相似文献   

12.
The dry sliding wear tests were performed for AZ91D alloy under the loads of 12.5–300 N and the ambient temperatures of 25–200 °C. We studied the wear characteristics of AZ91D alloy as a function of the normal load and the ambient temperature. The mild-to-severe wear transition occurred with increasing the load and the critical load reduced with the ambient temperature rising. However, no matter how high the ambient temperature was in the range of 25–200 °C, the mild wear prevailed under the lower loads. Especially, the AZ91D alloy presented a lower wear rate at 200 °C than at 25 and 100 °C under the low loads of 12.5–25 N, but vice versa under the loads of more than 25 N. These phenomena seem to be contradictory to the popular view that the mild-to-severe wear transition is controlled by the critical surface temperature. These may be attributed to a thick and hard mechanical mixing layer (MML) containing the mixture of MgAl2O4 and Mg on the worn surface. The MML thickened with increasing the ambient temperature (under the low loads), effectively reduced wear and markedly elevated the critical surface temperature. The oxidative wear and delamination wear successively predominated in the mild wear regime; the gross plastic-induced wear would prevail in the severe wear regime.  相似文献   

13.
The abrasion wear resistance of Fe–32Cr–4.5C wt% hardfacing alloy was investigated as a function of matrix microstructure. In this study, the alloy was deposited on ASTM A36 carbon steel plates by the shielded metal arc welding (SMAW) process and the as-welded matrix microstructure was changed into ferrite, martensite, and tempered martensite by heat treatment processes. The Pin-on-disk test results show that under low (5 N) and high (20 N) load conditions, the wear resistance behavior of the as-welded matrix sample is 20 and 15% higher, respectively, than the martensitic matrix sample, although the bulk hardness of the as-welded matrix is 5% lower. The ferritic matrix sample has the poorest wear resistance behavior which is less than half of that of the as-welded matrix one. Micro-ploughing, micro-cutting, and micro-cracking are recognized as the micro-mechanisms in the material removal in which the proportion of micro-ploughing mechanism increased by increasing matrix toughness.  相似文献   

14.
Wear behavior of the HVOF deposited Cr3C2–NiCr and WC–Co coatings on Fe-base steels were evaluated by the pin-on-disc mechanism. The constant normal load applied to the pin was 49 N and sliding distance was 4500 m with velocity of 1 m/s, at ambient temperature and humidity. The specific wear rate of WC–Co coating was 3 mm3/N m and Cr3C2–NiCr coating was 5.3 mm3/N m. SEM/EDAX and XRD techniques were used to analyze the worn out surface and wear debris. The Fe2O3 was identified as the major phase in the wear debris. The wear mechanism is mild adhesive wear in nature.  相似文献   

15.
《Wear》1996,193(2):169-179
The influence of temperature on wear resistance was studied in a 2618 Al alloy reinforced with 15 vol% SiC particulates and the corresponding unreinforced alloy in the temperature range 20–200 °C. A transition from mild to severe wear (shown by an increase of two orders of magnitude in the wear rates) was observed in both materials beyond a critical temperature. The addition of the SiC particulates improved the wear resistance by a factor of two in the mild wear region, and the transition temperature, which was around 50 °C higher in the composite. This higher transition temperature was due to the retention of the mechanical properties in the composite at elevated temperature. Heat treatments (either natural or artificial aging) did not modify substantially the wear resistance of either the composite or the unreinforced alloy.  相似文献   

16.
The effects of cold work process between aging and solution heat treatment on the microstructure, hardness and the tribologic behaviour of a copper–beryllium (Cu–Be) alloy C17200 were investigated. The wear behaviour of the alloys was studied using ‘pin on disc’ method under dry conditions. The results show that the formation of fine grained structure and γ phase particles enhances the mechanical properties of the alloy; nonetheless, they do not reduce the wear rate. This is attributed to the capability of the softer specimens to maintain oxygen rich compounds during the dry sliding test.  相似文献   

17.
The temperature dependence of the intensity of generation of the second harmonic of laser radiation with λ = 1.064 µm in various powders of extra-pure potassium nitrate is studied. The powders are obtained from crystals grown in a KNO3-Ba(NO3)2—H2O water-salt system. It is demonstrated that the centrosymmetric phase is crystallized from pure solutions. If Ba(NO3)2 is added to the solution, non-centrosymmetric phases of KNO3 or 2KNO3 · Ba(NO3)2 double salt are formed. As the crystals are cooled down from the temperature of 160 °C, the samples display a ferroelectric phase transition and a hysteresis relaxation dependence of the nonlinear optical response due to the method of sample preparation.  相似文献   

18.
Lubrication conditions and blank holder force (BHF) are two key processing parameters in deep drawing. This is more obvious in micro forming because of the miniaturization of the specimen size. Micro conical–cylindrical cups with internal conical bottom diameter of only 0.4 mm were well formed. The influences of lubrication conditions and BHF on micro deep drawing of micro conical–cylindrical cups were investigated using a micro blanking–deep drawing compound mold. Pure copper C1100 with a thickness of 50 μm, which was annealed at 450 °C for 2 h in vacuum condition, was chosen as the specimen material. The experiments were conducted on a universal testing machine with a forming velocity of 0.05 mm/s under 4 kinds of lubrication conditions and BHF. The experimental results showed that a micro conical–cylindrical cup with internal conical bottom diameter of only 0.4 mm was well formed, and the limiting drawing ratio (LDR) reached 2.1. The polyethylene (PE) film, which decreased the drawing force and increased the drawing ratio (DR), was superior to castor oil, petroleum jelly and dry friction, and can be chosen as a proper lubricant for micro deep drawing. The rim of the micro cup seriously wrinkled when BHF was less than 4.2 N. The bottom of the micro cup cracked when the BHF was larger than 5.6 N.  相似文献   

19.
Dry sliding wear tests of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy (TC11 alloy) sliding against AISI 52100 and AISI M2 steels were performed under the load of 50–250 N at 25–600 °C. For two kinds of counterface materials, the titanium alloy presented totally different wear behaviours as the function of temperature. The appreciable variations of the titanium alloy sliding against different counterface materials were attributed the fact that a hard counterface caused unstable existence of tribo-layers by its microcutting action, thus resulting in the increase of wear rate. It is suggested that the hard counterface must be avoided as the counterface for the titanium alloy/steel sliding system.  相似文献   

20.
《Wear》2004,256(1-2):66-72
Cavitation erosion tests of three Fe–Mn–Si–Cr shape memory alloys were carried out at speed 34 and 45 m/s using a rotating disc rig, and their cavitation damage has been investigated by comparison with a referring 13Cr–5Ni–Mo stainless steel used for hydraulic turbine vanes. The research results proved that the cavitation erosion of the Fe–Mn–Si–Cr shape memory alloys is a failure of low cycle fatigue and fracture propagates along grain boundaries. After 48 h cavitation erosion the cumulative mass losses of the studied alloys at speed 45 m/s are more than theirs at speed 34 m/s; however, the effect of velocity on cavitation damage of the Fe–Mn–Si–Cr alloys is much lower than that of 13Cr–5Ni–Mo stainless steel. The cumulative mass loss of the 13Cr–5Ni–Mo stainless steel are 26.3 mg at speed 45 m/s and 3.2 mg at speed 34 m/s, and the mass losses of the Fe–Mn–Si–Cr alloys are within the range of 3.6–7.3 mg at speed 45 m/s and 2.0–4.1 mg at speed 34 m/s. The surface elasticity of the Fe–Mn–Si–Cr shape memory alloys is better than that of the 13Cr–5Ni–Mo stainless steel, and the effect of surface elasticity on cavitation damage increases with velocity. The excellent surface elasticity of the cavitation-induced hexagonal closed-packed (h.c.p.) martensite plays a key role in contribution of phase transformation to the cavitation erosion resistance of the Fe–Mn–Si–Cr shape memory alloys. The cavitation damage of the studied alloys at speed 45 m/s mainly depends on their surface elasticity, and the variation of 48 h cumulative mass loss (Δm) as a function of the elastic depth (he) can be expressed as Δm=2.695+[1371.94/(4(he−46.83)2+12.751)] with a correlation factor of 0.99345.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号