首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digital Elevation Models (DEMs) are used to compute the hydro-geomorphological variables required by distributed hydrological models. However, the resolution of the most precise DEMs is too fine to run these models over regional watersheds. DEMs therefore need to be aggregated to coarser resolutions, affecting both the representation of the land surface and the hydrological simulations. In the present paper, six algorithms (mean, median, mode, nearest neighbour, maximum and minimum) are used to aggregate the Shuttle Radar Topography Mission (SRTM) DEM from 3″ (90 m) to 5′ (10 km) in order to simulate the water balance of the Lake Chad basin (2.5 Mkm2). Each of these methods is assessed with respect to selected hydro-geomorphological properties that influence Terrestrial Hydrology Model with Biogeochemistry (THMB) simulations, namely the drainage network, the Lake Chad bottom topography and the floodplain extent.The results show that mean and median methods produce a smoother representation of the topography. This smoothing involves the removing of the depressions governing the floodplain dynamics (floodplain area<5000 km2) but it eliminates the spikes and wells responsible for deviations regarding the drainage network. By contrast, using other aggregation methods, a rougher relief representation enables the simulation of a higher floodplain area (>14,000 km2 with the maximum or nearest neighbour) but results in anomalies concerning the drainage network. An aggregation procedure based on a variographic analysis of the SRTM data is therefore suggested. This consists of preliminary filtering of the 3″ DEM in order to smooth spikes and wells, then resampling to 5′ via the nearest neighbour method so as to preserve the representation of depressions. With the resulting DEM, the drainage network, the Lake Chad bathymetric curves and the simulated floodplain hydrology are consistent with the observations (3% underestimation for simulated evaporation volumes).  相似文献   

2.
《Computers & Geosciences》2006,32(8):1169-1181
This work presents a methodology for the refinement of shuttle radar topographic mission (SRTM-90 m) data available for South America to enable detailed watershed studies in Amazonia. The original data were pre-processed to properly map detailed low-order drainage features and allowed digital estimates of morphometric variables. Spatial-resolution refinement (3″ to 1″, or ∼90 to ∼30 m) through data kriging was found to be an interesting solution to construct digital elevation models (DEMs) with more adequate presentation of landforms than the original data. The refinement of spatial resolution by kriging interpolation overcame the main constraints for drainage modeling with original SRTM-90 m, such as spatial randomness, artifacts and unrealistic presentation due to pixel size. Kriging with a Gaussian semivariogram model caused a smoothing of the resulting DEM, but the main features for drainage modeling were preserved. Canopy effects on the modeled surface represented the main remaining limitation for terrain analysis after pre-processing. Data regarding a small watershed in Amazonas (∼38 km2), Brazil, were evaluated through visualization techniques, morphometric analyses and plot diagrams of the results. The data showed limitations for use in the original form, but could be applied for watershed modeling at relatively detailed scales after the described pre-processing.  相似文献   

3.
The purpose of this study was to estimate the fraction of photosynthetically active radiation absorbed by the canopy (fPAR) from point measurements to airborne lidar for hierarchical scaling up and assessment of the Moderate Resolution Imaging Spectroradiometer (MODIS) fPAR product within a “medium-sized” (7 km × 18 km) watershed. Nine sites across Canada, containing one or more (of 11) distinct species types and age classes at varying stages of regeneration and seasonal phenology were examined using a combination of discrete pulse airborne scanning Light Detection And Ranging (lidar) and coincident analog and digital hemispherical photography (HP). Estimates of fPAR were first compared using three methods: PAR radiation sensors, HP, and airborne lidar. HP provided reasonable estimates of fPAR when compared with radiation sensors. A simplified fractional canopy cover ratio from lidar based on the number of within canopy returns to the total number of returns was then compared with fPAR estimated from HP at 486 geographically registered measurement locations. The return ratio fractional cover method from lidar compared well with HP-derived fPAR (coefficient of determination = 0.72, RMSE = 0.11), despite varying the lidar survey configurations, canopy structural characteristics, seasonal phenologies, and possible slight inaccuracies in location using handheld GPS at some sites. Lidar-derived fractional cover estimates of fPAR were ~ 10% larger than those obtained using HP (after removing wood components), indicating that lidar likely provides a more realistic estimate of fPAR than HP when compared with radiation sensors. Finally, fPAR derived from lidar fractional cover was modelled at 1 m resolution and averaged over 99 1 km areas for comparison with MODIS fPAR. The following study is one of the first to scale between plot measurements and MODIS pixels using airborne lidar.  相似文献   

4.
Leaf area index (LAI) is a key forest structural characteristic that serves as a primary control for exchanges of mass and energy within a vegetated ecosystem. Most previous attempts to estimate LAI from remotely sensed data have relied on empirical relationships between field-measured observations and various spectral vegetation indices (SVIs) derived from optical imagery or the inversion of canopy radiative transfer models. However, as biomass within an ecosystem increases, accurate LAI estimates are difficult to quantify. Here we use lidar data in conjunction with SPOT5-derived spectral vegetation indices (SVIs) to examine the extent to which integration of both lidar and spectral datasets can estimate specific LAI quantities over a broad range of conifer forest stands in the northern Rocky Mountains. Our results show that SPOT5-derived SVIs performed poorly across our study areas, explaining less than 50% of variation in observed LAI, while lidar-only models account for a significant amount of variation across the two study areas located in northern Idaho; the St. Joe Woodlands (R2 = 0.86; RMSE = 0.76) and the Nez Perce Reservation (R2 = 0.69; RMSE = 0.61). Further, we found that LAI models derived from lidar metrics were only incrementally improved with the inclusion of SPOT 5-derived SVIs; increases in R2 ranged from 0.02–0.04, though model RMSE values decreased for most models (0–11.76% decrease). Significant lidar-only models tended to utilize a common set of predictor variables such as canopy percentile heights and percentile height differences, percent canopy cover metrics, and covariates that described lidar height distributional parameters. All integrated lidar-SPOT 5 models included textural measures of the visible wavelengths (e.g. green and red reflectance). Due to the limited amount of LAI model improvement when adding SPOT 5 metrics to lidar data, we conclude that lidar data alone can provide superior estimates of LAI for our study areas.  相似文献   

5.
Terrain is modelled in Geographic Information Science on a grid, assuming that elevation values are constant within any single pixel of a Digital Elevation Model (DEM). Pixels are considered flat and rigid, for computational simplicity (a ‘rigid pixel’ paradigm). This paradigm does not account for the slope and curvature of terrain within each pixel, generating imprecise measurements, particularly as pixel size increases or in uneven terrain. This paper relaxes the rigid pixel assumption, allowing for possible sub-pixel variations in slope and curvature (a ‘surface-adjusted’ paradigm). This paper compares different interpolation methods to investigate sub-pixel variations for estimating elevation of arbitrary points given a regular grid. Tests interpolating elevation values for 20,000 georeferenced off-centroid random points from a regular grid DEM are presented, using a variety of exact and inexact local deterministic interpolation methods within contiguity configurations incorporating first and second order neighbours. The paper examines the accuracy of surface-adjusted estimations across a progression of spatial resolutions (10 m, 30 m, 100 m, and 1,000 m DEMs) and a suite of terrain types varying in latitude, altitude, slope, and roughness, validating off-centre estimates against direct elevation measurements on 3 m resolution lidar DEM. Results illustrate that the Bi-quadratic and Bi-cubic interpolation methods outperform Weighted Average, Linear, and Bi-linear methods at coarse resolutions and in rough or non-uniform terrain. In smooth or flat terrain and at finest resolutions, the interpolation method impacts estimation accuracy less or not at all. The type of contiguity configuration appears to play a role in estimation errors as well, with tighter neighbourhoods exhibiting higher accuracy. The analysis also examined regularized mathematical surfaces, adding autocorrelated randomly distributed noise to simulate terrain. The results of experiments based on regularized smooth mathematical surfaces do not translate directly to terrain modelling. The analysis also considers the balance between the increased computation times needed to measure surface-adjusted elevation against improvements in accuracy.  相似文献   

6.
The self-shadowing of conifer canopies results from the size and arrangement of trees within a stand and is a first-order term controlling radiance from forested terrain at common pixel scales of tens of meters. Although self-shadowing is a useful attribute for forest remote-sensing classification, compensation for the topographic effects of self-shadowing has proven problematic. This study used airborne canopy LiDAR measurements of 80 Pacific Northwest, USA conifer stands ranging in development stage from pre-canopy closure to old-growth in order to model canopy self-shadowing for four solar zenith angles (SZA). The shadow data were compared to physical measurements used to characterize forest stands, and were also used to test and improve terrain compensation models for remotely sensed images of forested terrain. Canopy self-shadowing on flat terrain strongly correlates with the canopy's geometric complexity as measured by the rumple index (canopy surface area/ground surface area) (R2 = 0.94–0.87 depending on SZA), but is less correlated with other stand measurements: 95th percentile canopy height (R2 = 0.68), mean diameter at breast height (dbh) (R2 = 0.65), basal area ha? 1 (R2 = 0.18), and canopy stem count ha? 1 (R2 = 0.18). The results in this paper support interpretation of self-shadowing as a function of canopy complexity, which is an important ecological characteristic in its own right. Modeling of canopy self-shadowing was used to assess the accuracy of the Sun-Canopy-Sensor (SCS) topographic correction, and to develop a new empirical Adaptive Shade Compensation (ASC) topographic compensation model. ASC used measured shadow (as an estimate of canopy complexity) and the SCS term (to describe the illumination geometry) as independent variables in multiple regressions to determine the topographic correction. The ASC model provided more accurate radiance corrections with limited variation in results across the full range of canopy complexities and incidence angles.  相似文献   

7.
We develop and implement an algorithm for inverting three-element array data on a Matlab platform. The algorithm allows reliable estimation of back azimuth and apparent velocity from seismic records under low signal-to-noise conditions. We start with a cubic spline interpolation of the waveforms and determine the differences between arrival times at pairs of array elements. The time differences are directly computed from cross-correlation functions. The advantages of this technique are (a) manual picking of the onset of each arrival is not necessary at each array element; (b) interpolation makes it possible to estimate time differences at a higher resolution than the sampling rate of the digital waveforms; (c) consistency among three independent determinations provides a reliability check; and (d) the value of apparent velocity indicates the nature of the recorded wavelet and physically checks the results. The algorithm was tested on data collected by a tri-partite array (with an aperture of ~250 m) deployed in 1998 by the National Data Center of Israel, during a field experiment in southern Israel, 20 km southwest of the Dead Sea. The data include shallow explosions and natural earthquakes under both high and low signal-to-noise conditions. The procedure developed in this study is considered suitable for searching of small aftershocks subsequent to an underground explosion, in the context of on-site inspections according to the Comprehensive Nuclear-Test-Ban Treaty (CTBT).  相似文献   

8.
The most practical way to get spatially broad and continuous measurements of the surface temperature in the data-sparse cryosphere is by satellite remote sensing. The uncertainties in satellite-derived LSTs must be understood to develop internally-consistent decade-scale land surface temperature (LST) records needed for climate studies. In this work we assess satellite-derived “clear-sky” LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and LSTs derived from the Enhanced Thematic Mapper Plus (ETM+) over snow and ice on Greenland. When possible, we compare satellite-derived LSTs with in-situ air temperature observations from Greenland Climate Network (GC-Net) automatic weather stations (AWS). We find that MODIS, ASTER and ETM+ provide reliable and consistent LSTs under clear-sky conditions and relatively-flat terrain over snow and ice targets over a range of temperatures from ? 40 to 0 °C. The satellite-derived LSTs agree within a relative RMS uncertainty of ~ 0.5 °C. The good agreement among the LSTs derived from the various satellite instruments is especially notable since different spectral channels and different retrieval algorithms are used to calculate LST from the raw satellite data. The AWS record in-situ data at a “point” while the satellite instruments record data over an area varying in size from: 57 × 57 m (ETM+), 90 × 90 m (ASTER), or to 1 × 1 km (MODIS). Surface topography and other factors contribute to variability of LST within a pixel, thus the AWS measurements may not be representative of the LST of the pixel. Without more information on the local spatial patterns of LST, the AWS LST cannot be considered valid ground truth for the satellite measurements, with RMS uncertainty ~ 2 °C. Despite the relatively large AWS-derived uncertainty, we find LST data are characterized by high accuracy but have uncertain absolute precision.  相似文献   

9.
《Applied ergonomics》2011,42(1):131-137
The objective of this study was to quantify the effects of ground surface motion on the biomechanical responses of a person performing a lifting task. A boat motion simulator (BMS) was built to provide a sinusoidal ground motion (simultaneous vertical linear translation and a roll angular displacement) that simulates the deck motion on a small fishing boat. Sixteen participants performed lifting, lowering and static holding tasks under conditions of two levels of mass (5 and 10 kg) and five ground moving conditions. Each ground moving condition was specified by its ground angular displacement and instantaneous vertical acceleration: A): +6°, −0.54 m/s2; B): +3°, −0.27 m/s2; C): 0°, 0 m/s2; D): −3°, 0.27 m/s2; and E): −6°, 0.54 m/s2. As they performed these tasks, trunk kinematics were captured using the lumbar motion monitor and trunk muscle activities were evaluated through surface electromyography. The results showed that peak sagittal plane angular acceleration was significantly higher in Condition A than in Conditions C, D and E (698°/s2 vs. 612–617°/s2) while peak sagittal plane angular deceleration during lowering was significantly higher in moving conditions (conditions A and E) than in the stationary condition C (538–542°/s2 vs. 487°/s2). The EMG results indicate that the boat motions tend to amplify the effects of the slant of the lifting surface and the external oblique musculature plays an important role in stabilizing the torso during these dynamic lifting tasks.  相似文献   

10.
Aboveground dry biomass was estimated for the 1.3 M km2 forested area south of the treeline in the eastern Canadian province of Québec by combining data from an airborne and spaceborne LiDAR, a Landsat ETM+ land cover map, a Shuttle Radar Topographic Mission (SRTM) digital elevation model, ground inventory plots, and vegetation zone maps. Plot-level biomass was calculated using allometric relationships between tree attributes and biomass. A small footprint portable laser profiler then flew over these inventory plots to develop a generic airborne LiDAR-based biomass equation (R2 = 0.65, n = 207). The same airborne LiDAR system flew along four portions of orbits of the ICESat Geoscience Laser Altimeter System (GLAS). A square-root transformed equation was developed to predict airborne profiling LiDAR estimates of aboveground dry biomass from GLAS waveform parameters combined with an SRTM slope index (R2 = 0.59, n = 1325).Using the 104,044 quality-filtered GLAS pulses obtained during autumn 2003 from 97 orbits over the study area, we then predicted aboveground dry biomass for the main vegetation areas of Québec as well as for the entire Province south of the treeline. Including cover type covariances both within and between GLAS orbits increased standard errors of the estimates by two to five times at the vegetation zone level and as much as threefold at the provincial level. Aboveground biomass for the whole study area averaged 39.0 ± 2.2 (standard error) Mg ha? 1 and totalled 4.9 ± 0.3 Pg. Biomass distributions were 12.6% northern hardwoods, 12.6% northern mixedwood, 38.4% commercial boreal, 13% non-commercial boreal, 14.2% taiga, and 9.2% treed tundra. Non-commercial forests represented 36% of the estimated aboveground biomass, thus highlighting the importance of remote northern forests to C sequestration. This study has shown that space-based forest inventories of northern forests could be an efficient way of estimating the amount, distribution, and uncertainty of aboveground biomass and carbon stocks at large spatial scales.  相似文献   

11.
This study presents and compares new methods to describe the 3D canopy structure with Airborne Laser Scanning (ALS) waveform data as well as ALS point data. The ALS waveform data were analyzed in three different ways; by summing the intensity of the waveforms in height intervals (a); by first normalizing the waveforms with an algorithm based on Beer–Lambert law to compensate for the shielding effect of higher vegetation layers on reflection from lower layers and then summing the intensity (b); and by deriving points from the waveforms (c). As a comparison, conventional, discrete return ALS point data from the laser scanning system were also analyzed (d). The study area was located in hemi-boreal, spruce dominated forest in the southwest of Sweden (Lat. 58° N, Long. 13° E). The vegetation volume profile was defined as the volume of all tree crowns and shrubs in 1 dm height intervals in a field plot and the total vegetation volume as the sum of the vegetation volume profile in the field plot. The total vegetation volume was estimated for 68 field plots with 12 m radius from the proportion between the amount of ALS reflections from the vegetation and the total amount of ALS reflections based on Beer–Lambert law. ALS profiles were derived from the distribution of the ALS data above the ground in 1 dm height intervals. The ALS profiles were rescaled using the estimated total vegetation volume to derive the amount of vegetation at different heights above the ground. The root mean square error (RMSE) for cross validated regression estimates of the total vegetation volume was 31.9% for ALS waveform data (a), 27.6% for normalized waveform data (b), 29.1% for point data derived from the ALS waveforms (c), and 36.5% for ALS point data from the laser scanning system (d). The correspondence between the estimated vegetation volume profiles was also best for the normalized waveform data and the point data derived from the ALS waveforms and worst for ALS point data from the laser scanning system as demonstrated by the Reynolds error index. The results suggest that ALS waveform data describe the volumetric aspects of vertical vegetation structure somewhat more accurately than ALS point data from the laser scanning system and that compensation for the shielding effect of higher vegetation layers is useful. The new methods for estimation of vegetation volume profiles from ALS data could be used in the future to derive 3D models of the vegetation structure in large areas.  相似文献   

12.
An accurate contour estimation plays a significant role in classification and estimation of shape, size, and position of thyroid nodule. This helps to reduce the number of false positives, improves the accurate detection and efficient diagnosis of thyroid nodules. This paper introduces an automated delineation method that integrates spatial information with neutrosophic clustering and level-sets for accurate and effective segmentation of thyroid nodules in ultrasound images. The proposed delineation method named as Spatial Neutrosophic Distance Regularized Level Set (SNDRLS) is based on Neutrosophic L-Means (NLM) clustering which incorporates spatial information for Level Set evolution. The SNDRLS takes rough estimation of region of interest (ROI) as input provided by Spatial NLM (SNLM) clustering for precise delineation of one or more nodules. The performance of the proposed method is compared with level set, NLM clustering, Active Contour Without Edges (ACWE), Fuzzy C-Means (FCM) clustering and Neutrosophic based Watershed segmentation methods using the same image dataset. To validate the SNDRLS method, the manual demarcations from three expert radiologists are employed as ground truth. The SNDRLS yields the closest boundaries to the ground truth compared to other methods as revealed by six assessment measures (true positive rate is 95.45 ± 3.5%, false positive rate is 7.32 ± 5.3% and overlap is 93.15 ± 5. 2%, mean absolute distance is 1.8 ± 1.4 pixels, Hausdorff distance is 0.7 ± 0.4 pixels and Dice metric is 94.25 ± 4.6%). The experimental results show that the SNDRLS is able to delineate multiple nodules in thyroid ultrasound images accurately and effectively. The proposed method achieves the automated nodule boundary even for low-contrast, blurred, and noisy thyroid ultrasound images without any human intervention. Additionally, the SNDRLS has the ability to determine the controlling parameters adaptively from SNLM clustering.  相似文献   

13.
MATLAB is a high-level matrix/array language with control flow statements and functions. MATLAB has several useful toolboxes to solve complex problems in various fields of science, such as geophysics. In geophysics, the inversion of 2D DC resistivity imaging data is complex due to its non-linearity, especially for high resistivity contrast regions. In this paper, we investigate the applicability of MATLAB to design, train and test a newly developed artificial neural network in inverting 2D DC resistivity imaging data. We used resilient propagation to train the network. The model used to produce synthetic data is a homogeneous medium of 100 Ω m resistivity with an embedded anomalous body of 1000 Ω m. The location of the anomalous body was moved to different positions within the homogeneous model mesh elements. The synthetic data were generated using a finite element forward modeling code by means of the RES2DMOD. The network was trained using 21 datasets and tested on another 16 synthetic datasets, as well as on real field data. In field data acquisition, the cable covers 120 m between the first and the last take-out, with a 3 m x-spacing. Three different electrode spacings were measured, which gave a dataset of 330 data points. The interpreted result shows that the trained network was able to invert 2D electrical resistivity imaging data obtained by a Wenner–Schlumberger configuration rapidly and accurately.  相似文献   

14.
Light use efficiency (LUE) is an important variable characterizing plant eco-physiological functions and refers to the efficiency at which absorbed solar radiation is converted into photosynthates. The estimation of LUE at regional to global scales would be a significant advantage for global carbon cycle research. Traditional methods for canopy level LUE determination require meteorological inputs which cannot be easily obtained by remote sensing. Here we propose a new algorithm that incorporates the enhanced vegetation index (EVI) and a modified form of land surface temperature (Tm) for the estimation of monthly forest LUE based on Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Results demonstrate that a model based on EVI × Tm parameterized from ten forest sites can provide reasonable estimates of monthly LUE for temperate and boreal forest ecosystems in North America with an R2 of 0.51 (p < 0.001) for the overall dataset. The regression coefficients (a, b) of the LUE–EVI × Tm correlation for these ten sites have been found to be closely correlated with the average EVI (EVI_ave, R2 = 0.68, p = 0.003) and the minimum land surface temperature (LST_min, R2 = 0.81, p = 0.009), providing a possible approach for model calibration. The calibrated model shows comparably good estimates of LUE for another ten independent forest ecosystems with an overall root mean square error (RMSE) of 0.055 g C per mol photosynthetically active radiation. These results are especially important for the evergreen species due to their limited variability in canopy greenness. The usefulness of this new LUE algorithm is further validated for the estimation of gross primary production (GPP) at these sites with an RMSE of 37.6 g C m? 2 month? 1 for all observations, which reflects a 28% improvement over the standard MODIS GPP products. These analyses should be helpful in the further development of ecosystem remote sensing methods and improving our understanding of the responses of various ecosystems to climate change.  相似文献   

15.
Meso-scale digital terrain models (DTMs) and canopy-height estimates, or digital canopy models (DCMs), are two lidar products that have immense potential for research in tropical rain forest (TRF) ecology and management. In this study, we used a small-footprint lidar sensor (airborne laser scanner, ALS) to estimate sub-canopy elevation and canopy height in an evergreen tropical rain forest. A fully automated, local-minima algorithm was developed to separate lidar ground returns from overlying vegetation returns. We then assessed inverse distance weighted (IDW) and ordinary kriging (OK) geostatistical techniques for the interpolation of a sub-canopy DTM. OK was determined to be a superior interpolation scheme because it smoothed fine-scale variance created by spurious understory heights in the ground-point dataset. The final DTM had a linear correlation of 1.00 and a root-mean-square error (RMSE) of 2.29 m when compared against 3859 well-distributed ground-survey points. In old-growth forests, RMS error on steep slopes was 0.67 m greater than on flat slopes. On flatter slopes, variation in vegetation complexity associated with land use caused highly significant differences in DTM error distribution across the landscape. The highest DTM accuracy observed in this study was 0.58-m RMSE, under flat, open-canopy areas with relatively smooth surfaces. Lidar ground retrieval was complicated by dense, multi-layered evergreen canopy in old-growth forests, causing DTM overestimation that increased RMS error to 1.95 m.A DCM was calculated from the original lidar surface and the interpolated DTM. Individual and plot-scale heights were estimated from DCM metrics and compared to field data measured using similar spatial supports and metrics. For old-growth forest emergent trees and isolated pasture trees greater than 20 m tall, individual tree heights were underestimated and had 3.67- and 2.33-m mean absolute error (MAE), respectively. Linear-regression models explained 51% (4.15-m RMSE) and 95% (2.41-m RMSE) of the variance, respectively. It was determined that improved elevation and field-height estimation in pastures explained why individual pasture trees could be estimated more accurately than old-growth trees. Mean height of tree stems in 32 young agroforestry plantation plots (0.38 to 18.53 m tall) was estimated with a mean absolute error of 0.90 m (r2=0.97; 1.08-m model RMSE) using the mean of lidar returns in the plot. As in other small-footprint lidar studies, plot mean height was underestimated; however, our plot-scale results have stronger linear models for tropical, leaf-on hardwood trees than has been previously reported for temperate-zone conifer and deciduous hardwoods.  相似文献   

16.
It is shown that the photonic crystal slab (PCS) with hexagonal air holes has band gaps in the guided mode spectrum, which can be compared to that of the PCS with circular air holes, thus it is also a good candidate to be used for the PC devices. The PC with hexagonal air holes and a = 0.5 μm and r = 0.15 μm was fabricated successfully by selective area metal organic vapor phase epitaxy (SA-MOVPE). The vertical and smooth sidewalls are formed and the uniformity is very good. The same process was also used to fabricate a hexagonal air hole array with the width of 0.1 μm successfully. The air-bridge PCS with hexagonal air holes and a = 0.3 μm and r = 0.09 μm was also fabricated successfully by SA-MOVPE. Further optimization of the growth conditions for the sacrificial layer and the selective etching of the GaAs cap layer is also needed. Our experimental results indicate that SA-MOVPE is a promising method for fabricating PC devices and photonic nanostructures.  相似文献   

17.
This work is focused on an experimental study of phase equilibria in the B-Fe-Mn ternary system combined with a CALPHAD theoretical analysis with the aim of creating a reliable theoretical thermodynamic dataset for calculation of the phase diagram of the ternary system. Boron is modelled as an interstitial element in all solid solutions of Fe and Mn. In the experimental study, B-Mn-Fe alloys were prepared and heat-treated at 873 K for 90 days/2160 h and at 1223 K for 60 days/1440 h. Following heat treatment, the phase equilibria and composition of the coexisting phases were determined using scanning electron microscopy and X-ray diffraction analysis. The experimental results obtained, together with experimental results collected from the literature, were used in the optimization of the thermodynamic parameters by using the CALPHAD method. The result of this work is an optimized thermodynamic dataset for the B-Fe-Mn ternary system allowing the phase diagram and thermodynamic properties to be calculated.  相似文献   

18.
This paper reports a front-illuminated planar InGaAs PIN photodiode with very low dark current, very low capacitance and very high responsivity on S-doped InP substrate. The presented device which has a thick absorption layer of 2.92 μm and a photosensitive area 73 μm in diameter exhibited the high performance of a very low capacitance of 0.47 pF, a very low dark current of 0.041 nA, a very high responsivity of 0.99 A/W (79% quantum efficiency) at λ = 1.55 μm, the 3 dB bandwidths of 6.89 GHz (−5 V), 7.48 GHz (−12 V) for bare chips and 4.48 GHz (−5 V), 5.02 GHz (−12 V) for the devices packaged in TO can, respectively. Furthermore, the developed PIN photodiodes possess high breakdown voltage of less than −25 V.  相似文献   

19.
We introduce a new method to construct aggregation functions. These aggregation functions are called biconic aggregation functions with a given diagonal (resp. opposite diagonal) section and their construction is based on linear interpolation on segments connecting the diagonal (resp. opposite diagonal) of the unit square to the points (0, 1) and (1, 0) (resp. (0, 0) and (1, 1)). Subclasses of biconic aggregation functions such as biconic semi-copulas, biconic quasi-copulas and biconic copulas are studied in detail.  相似文献   

20.
This paper presents an electromagnetic energy harvesting scheme by using a composite magnetoelectric (ME) transducer and a power management circuit. In the transducer, the vibrating wave induced from the magnetostrictive Terfenol-D plate in dynamic magnetic field is converged by using an ultrasonic horn. Consequently more vibrating energy can be converted into electricity by the piezoelectric element. A switching capacitor network for storing electricity is developed. The output of the transducer charges the storage capacitors in parallel until the voltage across the capacitors arrives at the threshold, and then the capacitors are automatically switched to being in series. More capacitors can be employed in the capacitor network to further raise the output voltage in discharging. For the weak magnetic field environment, an active magnetic generator and a magnetic coil antenna under ground are used for producing an ac magnetic field of 0.2–1 Oe at a distance of 25–50 m. In combination with the supply management circuit, the electromagnetic energy harvester with a rather weak power output (about 20 μW) under an ac magnetic field of 1 Oe can supply power for wireless sensor nodes with power consumption of 75 mW at a duration of 620 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号