共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrate is often seen as an agricultural pollutant of groundwater and so is expected to be at higher concentrations in the groundwaters surrounding a city than in those beneath it. However the difference between rural and urban nitrate concentrations is often small, due to the non-agricultural sources of nitrogen that are concentrated in cities. This paper illustrates the source and significance of non-agricultural nitrogen for groundwater and presents a case study of nitrate loading in the city of Nottingham. Major sources of nitrogen in urban aquifers are related to wastewater disposal (on-site systems and leaky sewers), solid waste disposal (landfills and waste tips). The major sources of nitrogen in the Nottingham area are mains leakage and contaminated land with approximately 38% each of a total load of 21 kg N ha(-1) year(-1). 相似文献
2.
Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers 总被引:4,自引:0,他引:4
Murata A Takada H Mutoh K Hosoda H Harada A Nakada N 《The Science of the total environment》2011,409(24):5305-5312
We report the results of a nationwide survey of commonly used human and veterinary antibiotics (7 sulfonamides, trimethoprim, and 4 macrolides) in 37 Japanese rivers. Concentrations of the sum of the 12 target antibiotics ranged from undetectable to 626 ng/L, with a median of 7.3 ng/L for the 37 rivers. Antibiotics concentrations were higher in urban rivers than in rural rivers and were correlated with those of molecular markers of sewage (crotamiton and carbamazepine). Macrolides were dominant over sulfonamides in urban rivers. Sulfonamides, especially sulfamethazine (used in animals), were dominant in a few rivers in whose catchment animal husbandry is active. However, these signals of veterinary antibiotics were overwhelmed by those of human antibiotics in lower reaches of most rivers. The analysis of the antibiotics in all 88 samples showed that the target antibiotics in Japanese rivers are derived mainly from urban sewage, even though larger amounts of antibiotics are used in livestock. Most of the livestock waste-derived antibiotics are unlikely to be readily discharged to surface waters. 相似文献
3.
Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater 总被引:27,自引:0,他引:27
Dongmei Xue Jorin Botte Frederik Accoe Philip Taylor Michael Berglund 《Water research》2009,43(5):1159-1170
Nitrate (NO3−) contamination of surface- and groundwater is an environmental problem in many regions of the world with intensive agriculture and high population densities. Knowledge of the sources of NO3− contamination in water is important for better management of water quality. Stable nitrogen (δ15N) and oxygen (δ18O) isotope data of NO3− have been frequently used to identify NO3− sources in water. This review summarizes typical δ15N- and δ18O-NO3− ranges of known NO3− sources, interprets constraints and future outlooks to quantify NO3− sources, and describes three analytical techniques (“ion-exchange method”, “bacterial denitrification method”, and “cadmium reduction method”) for δ15N- and δ18O-NO3− determination. Isotopic data can provide evidence for the presence of dominant NO3− sources. However, quantification, including uncertainty assessment, is lacking when multiple NO3− sources are present. Moreover, fractionation processes are often ignored, but may largely constrain the accuracy of NO3− source identification. These problems can be overcome if (1) NO3− isotopic data are combined with co-migrating discriminators of NO3− sources (e.g. 11B), which are not affected by transformation processes, (2) contributions of different NO3− sources can be quantified via linear mixing models (e.g. SIAR), and (3) precise, accurate and high throughput isotope analytical techniques become available. 相似文献
4.
Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixed-bed bioreactor system 总被引:1,自引:0,他引:1
A novel bioreactor system, consisting of two biologically active carbon (BAC) reactors in series, was developed for the simultaneous removal of nitrate and arsenic from a synthetic groundwater supplemented with acetic acid. A mixed biofilm microbial community that developed on the BAC was capable of utilizing dissolved oxygen, nitrate, arsenate, and sulfate as the electron acceptors. Nitrate was removed from a concentration of approximately 50 mg/L in the influent to below the detection limit of 0.2 mg/L. Biologically generated sulfides resulted in the precipitation of the iron sulfides mackinawite and greigite, which concomitantly removed arsenic from an influent concentration of approximately 200 ug/L to below 20 ug/L through arsenic sulfide precipitation and surface precipitation on iron sulfides. This study showed for the first time that arsenic and nitrate can be simultaneously removed from drinking water sources utilizing a bioreactor system. 相似文献
5.
Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects 总被引:4,自引:0,他引:4
Rapid urbanization and frequent disposal of wastewater to surface water cause widespread contamination of freshwater supplies with emerging contaminants, such as pharmaceuticals, insecticides, surfactants, endocrine disruptors, including hormones. Although these organic contaminants may be present at trace levels, their adverse effects on aquatic life, animals and even humans are a growing concern. Numerous studies have been published on the occurrence and fate of emerging organic contaminants in different parts of the world, spanning a wide range of sources and aquatic environments including freshwater catchments, effluent wastewater streams, lakes, rivers, reservoirs, estuaries and marine waters. This paper reviews recent studies on the occurrence and fate of frequently detected pharmaceuticals and hormones and identifies areas that merit further research. 相似文献
6.
Potential nitrate removal in a coastal freshwater sediment (Haringvliet Lake, The Netherlands) and response to salinization 总被引:3,自引:0,他引:3
Nitrogen transformations and their response to salinization were studied in bottom sediment of a coastal freshwater lake (Haringvliet Lake, The Netherlands). The lake was formed as the result of a river impoundment along the south-western coast of the Netherlands, and is currently targeted for restoration of estuarine conditions. Nitrate porewater profiles indicate complete removal of NO(3)(-) within the upper few millimeters of sediment. Rapid NO(3)(-) consumption is consistent with the high potential rates of nitrate reduction (up to 200 nmol N cm(-3) h(-1)) measured with flow-through reactors (FTRs) on intact sediment slices. Acetylene-block FTR experiments indicate that complete denitrification accounts for approximately half of the nitrate reducing activity. The remaining NO(3)(-) reduction is due to incomplete denitrification and alternative reaction pathways, most likely dissimilatory nitrate reduction to NH(4)(+) (DNRA). Results of FTR experiments further indicate that increasing bottom water salinity may lead to a transient release of NH(4)(+) and dissolved organic carbon from the sediment, and enhance the rates of nitrate reduction and nitrite production. Increased salinity may thus, at least temporarily, increase the efflux of NH(4)(+) from the sediment to the surface water. This work shows that salinity affects the relative importance of denitrification compared to alternative nitrate reduction pathways, limiting the ability of denitrification to remove bioavailable nitrogen from aquatic ecosystems. 相似文献
7.
Colin Neal Helen P. Jarvie Brian A. Whitton 《The Science of the total environment》2010,408(7):1485-1500
The relationship between soluble and particulate phosphorus was examined for 9 major UK rivers including 26 major tributaries and 68 monitoring points, covering wide-ranging rural and agricultural/urban impacted systems with catchment areas varying from 1 to 6000 km2 scales. Phosphorus concentrations in Soluble Reactive (SRP), Total Dissolved (TDP), Total (TP), Dissolved Hydrolysable (DHP) and Particulate (PP) forms correlated with effluent markers (sodium and boron) and SRP was generally dominant signifying the importance of sewage sources. Low flows were particularly enriched in SRP, TDP and TP for average SRP > 100 μg/l indicating low effluent dilution. At particularly low average concentrations, SRP increased with flow but effluent sources were still implicated as the effluent markers (boron in particular) increased likewise. For rural areas, DHP had proportionately high concentrations and SRP + DHP concentrations could exceed environmental thresholds currently set for SRP. Given DHP has a high bioavailability the environmental implications need further consideration. PP concentrations were generally highest at high flows but PP in the suspended solids was generally at its lowest and in general PP correlated with particulate organic carbon and more so than the suspended sediment in total.Separation of pollutant inputs solely between effluent and diffuse (agriculture) components is misleading, as part of the “diffuse” term comprises effluents flushed from the catchments during high flow. Effluent sources of phosphorus supplied directly or indirectly to the river coupled with within-river interactions between water/sediment/biota largely determine pollutant levels.The study flags the fundamental need of placing direct and indirect effluent sources and contaminated storage with interchange to/from the river at the focus for remediation strategies for UK rivers in relation to eutrophication and the WFD. 相似文献
8.
Yu Umezawa Takahiro Hosono Fernando Siringan Robert Delinom Ichiro Tayasu Makoto Taniguchi 《The Science of the total environment》2009,407(9):3219-3231
The status of nitrate (NO3−), nitrite (NO2−) and ammonium (NH4+) contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate δ15N and δ18O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas: high nitrate contamination was observed in Jakarta (dry fields), and relatively lower nutrients consisting mainly of ammonium were detected in Bangkok (paddy fields).The exponential increase in NO3−-δ15N along with the NO3− reduction and clear δ18O/δ15N slopes of NO3− (∼ 0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer NO3− contamination via active denitrification and reduced nitrification.Our results showed that NO3− and NH4+ contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas, and this information should be shared among adjacent countries with similar geographic and cultural settings. 相似文献
9.
1-Aminopropanone (APR) is a volatile aminoketone of human origin that has been identified in raw sewage and surface waters. However, the traditional methodology for the determination of APR is extremely complicated and requires a skilled chemist to achieve consistent results. This investigation presents a novel and simple method for the analysis of APR by direct derivatization in aqueous media. APR is synthesized as its hydrochloride and derivatized using mercaptoethanol and o-phthalaldehyde. The product of reaction is separated on a 15 cm x 4.6 mm Luna C-18 column (1 mL/min, 45:55 acetonitrile: Water) and detected using a single quadrupole mass spectrometer detector operated in atmospheric pressure chemical ionization (APCI) mode. Method detection limits as low as 100 nM were routinely obtained with a precision of 1.7%. Recoveries of APR were always found to be greater then 88% in surface and wastewater samples fortified at three different levels. However, despite the robustness of the method and the fact that APR was consistently detected in urine it was not present in a variety surface or wastewaters analyzed during the course of the study. These results pose a critical question on the use of APR as a tracer for human derived wastewaters. 相似文献
10.
Michael E. Brady 《The International journal of environmental studies》2013,70(1-2):53-58
It is demonstrated that modern farming techniques, based on a short‐run, profit maximizing economic approach, using an array of artificial fertilizers, pesticides, herbicides and fungicides, is dynamically unstable and unsustainable. The result is the erosion of top soil which can't be regenerated, substituted for or recycled once lost, since its development over geological time required hundreds of thousands of years. 相似文献
11.
Endocrine disrupting compounds (EDCs) are pollutants with estrogenic or androgenic activity at very low concentrations and are emerging as a major concern for water quality. Within the past few decades, more and more target chemicals were monitored as the source of estrogenic or androgenic activity in wastewater, and great endeavors have been done on the removal of EDCs in wastewater. This article reviewed removal of EDCs from three aspects, that is, physical means, biodegradation, and chemical advanced oxidation (CAO). 相似文献
12.
A membrane bioreactor and reverse osmosis (MBR-RO) system was developed to assess potential reuse applications of municipal wastewater. The objective of the study was to examine the water quality throughout the system with a focus on waterborne pathogens, disinfection by-products (DBPs) and nitrate. This paper will discuss the presence of these contaminants in MBR effluent and focus on their subsequent removal by RO. This study has shown that high quality reuse water can be produced from municipal wastewater through the use of an MBR-RO system. The water meets California Title 22 reuse regulations for non-potable applications and US EPA drinking water limits for trihalomethanes (THM) (80 microg/L), haloacetic acids (HAA) (60 microg/L), chlorite (1.0 mg/L), total coliform (not detectable), viruses (not detectable), and nitrate/nitrite (10 mg N/L). However, THM formation (182-689 microg/L) attributed to cleaning of the MBR with chlorine and incomplete removal by subsequent RO treatment resulted in reuse water with THM levels (40.2+/-19.9 microg/L) high enough to present a potential concern when considering drinking water applications. Nitrate levels of up to 3.6 mg N/L, which resulted from incomplete removal by the RO membrane, are also a potential concern. A denitrification step in the MBR should be considered in potable water applications. 相似文献
13.
A solvent extraction approach was developed and examined for extraction of targeted organophosphorus compounds as well as nerve agent simulants from painted wallboard (PWB). Painted wallboard was chosen as a substrate due to its presence as large surface area media in an indoor environment that is applicable to a chemical agent release scenario. Three different solvent systems were examined with a 1:1 methylene chloride: acetone mixture having the most robust and consistent extraction for four target organophosphorus compounds [dimethyl methyl phosphonate (DMMP), diethyl methyl phosphonate (DEMP), diethyl methyl phosphonothioate (DEMPT), and diisopropyl methyl phosphonate (DIMP)]. An average extraction efficiency of approximately 60% was obtained for these four compounds. The extraction approach was further demonstrated by extracting and detecting the chemical impurities present in neat DMMP that was vapor deposited onto painted wallboard tickets as a simulant to an agent release. Five chemical impurities that were present in DMMP – dimethyl phosphate, trimethyl ester phosphoric acid, ethyl methyl methylphosphonate, O,O,S-trimethyl ester phosphorothioic acid, and biphenyl were detected on the PWB and were utilized to determine the source/supplier of the DMMP. 相似文献
14.
Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population 总被引:2,自引:0,他引:2
Ana Teresa Reis Sónia Morais Rodrigues Clarisse Araújo João Pedro Coelho Eduarda Pereira Armando C. Duarte 《The Science of the total environment》2009,407(8):2689-2700
A mercury-cell chlor-alkali plant operated in Estarreja (North-western Portugal) for 50 years causing widespread environmental contamination. Although production by this process ceased in 2002, mercury contamination from the plant remains significant. The main objective of this study was to investigate mercury impact on the nearby environment and potential risks to local population. To assess the level of contamination soil samples were collected from agricultural fields in the vicinity of the plant, extending the study by taking samples of the predominant vegetation suitable for animal and human consumption, water samples, and fish species from a nearby coastal lagoon, to gain a preliminary insight into the potential for contamination of the terrestrial and aquatic food web. To determine population exposure to mercury, hair samples were collected from local residents. Total mercury concentration in the 0-15 cm layer of soil was found to be highly variable, ranging between 0.010 and 91 mg kg− 1, although mercury contamination of soils was found to be restricted to a confined area. Lolium perenne roots contained between 0.0070 and 2.0 mg kg− 1, and there is evidence that root systems uptake mercury from the soil. Levels of mercury in the aerial parts of plants ranged between 0.018 and 0.98 mg kg− 1. It appears that plants with higher mercury concentration in soils and roots also display higher mercury concentration in leaves.Total mercury concentration in water samples ranged between 12 and 846 ng L− 1, all samples presenting concentrations below the maximum level allowable for drinking water defined in the Portuguese law (1.0 μg L− 1).Mercury levels in fish samples were below the maximum limit defined in the Portuguese law (0.5 mg kg− 1), ranging from 0.0040 to 0.24 mg kg− 1. Vegetables collected presented maximum mercury concentration of 0.17 mg kg− 1. In general, food is not contaminated and should not be responsible for major human exposure to the metal.Mercury determined in human hair samples (0.090-4.2 mg kg− 1; mean 1.5 mg kg− 1) can be considered within normal limits, according to WHO guidelines suggesting that it is not affecting the local population. Despite being subject to decades of mercury emissions, nowadays this pollutant is only found in limited small areas and must not constitute a risk for human health, should these areas be restricted and monitored.Considering the present data, it appears that the population from Estarreja is currently not being affected by mercury levels that still remain in the environment. 相似文献
15.
In an attempt to save costs many mines have replaced stainless steel solvent extraction/electrowinning (SX/EW) mixer/settler tanks with concrete basins lined with anchored concrete protection liner (CPL) on floor and walls, or CPL on walls and loose liner on the floor. The latter system, made with high density polyethylene (HDPE), was specified for a copper mine with novel aqueous and organic process solutions at higher than normal temperatures, approximately 55 °C. The solutions included sulfuric acid and aromatic hydrocarbons. The HDPE geomembrane manufacturer urged the design engineer to perform a chemical resistance test, a ∼$15,000 quality assurance investment. The engineer declined because he claimed prior success with this system. The liner failed. The forensic investigation is described. 相似文献
16.
Ullrich SM Ilyushchenko MA Tanton TW Uskov GA 《The Science of the total environment》2007,381(1-3):290-306
This study investigated the environmental impact and level of risk associated with mercury (Hg) contamination near a derelict chlor-alkali plant in Pavlodar, Northern Kazakhstan. Several species of fish were sampled from the highly polluted Lake Balkyldak and the nearby river Irtysh, to assess the extent of Hg bioaccumulation in the aquatic food chain and potential human health risks. A small number of bovine tissue samples, water samples, soil and plant samples from a nearby village were also investigated in order to make a preliminary assessment of potential impacts on the terrestrial food chain. Mercury levels in fish caught from Lake Balkyldak ranged from 0.16 to 2.2 mg kg(-1) and the majority of fish exceeded current human health criteria for Hg. Interspecies comparisons indicated that Hg is accumulated in the order dace>carp>tench. Site-specific bioaccumulation factors (BAF) were calculated for THg, and were estimated for MeHg. Fish from the river Irtysh and floodplain oxbow lakes contained between 0.075 and 0.159 mg kg(-1) of Hg and can be regarded as uncontaminated. Soils were found to be impacted by past atmospheric emissions of Hg. Cattle grazing in the surroundings of the factory are exposed to Hg from contaminated soils, plants and surface water, but the consumption of contaminated fish from the lake appears to be the main route of exposure for humans. 相似文献
17.
Access to safe drinking water is one of the first priorities following a disaster. However, providing drinking water to the affected population (AP) is challenging due to severe contamination and lack of access to infrastructure. An onsite treatment system for the AP is a more sustainable solution than transporting bottled water. Emergency water technologies (WTs) that are modular, mobile or portable are suitable for emergency relief. This paper reviews WTs including membrane technologies that are suitable for use in emergencies. Physical, chemical, thermal- and light-based treatment methods, and membrane technologies driven by different driving forces such as pressure, temperature and osmotic gradients are reviewed. Each WT is evaluated by ten mutually independent criteria: costs, ease of deployment, ease of use, maintenance, performance, potential acceptance, energy requirements, supply chain requirements, throughput and environmental impact. A scoring system based on these criteria is presented. A methodology for emergency WT selection based on compensatory multi-criteria analysis is developed and discussed. Finally, critical research needs are identified. 相似文献
18.
Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review 总被引:1,自引:0,他引:1
Mendell MJ 《Indoor air》2007,17(4):259-277
Most research into effects of residential exposures on respiratory health has focused on allergens, moisture/mold, endotoxin, or combustion products. A growing body of research from outside the US; however, has associated chemical emissions from common indoor materials with risk of asthma, allergies, and pulmonary infections. This review summarizes 21 studies in the epidemiologic literature on associations between indoor residential chemical emissions, or emission-related materials or activities, and respiratory health or allergy in infants or children. Associations, some strong, were reported between many risk factors and respiratory or allergic effects. Risk factors identified most frequently included formaldehyde or particleboard, phthalates or plastic materials, and recent painting. Findings for other risk factors, such as aromatic and aliphatic chemical compounds, were limited but suggestive. Elevated risks were also reported for renovation and cleaning activities, new furniture, and carpets or textile wallpaper. Reviewed studies were entirely observational, limited in size, and variable in quality, and specific risk factors identified may only be indicators for correlated, truly causal exposures. Nevertheless, overall evidence suggests a new class of residential risk factors for adverse respiratory effects, ubiquitous in modern residences, and distinct from those currently recognized. It is important to confirm and quantify any risks, to motivate and guide necessary preventive actions. PRACTICAL IMPLICATIONS: Composite wood materials that emit formaldehyde, flexible plastics that emit plasticizers, and new paint have all been associated with increased risks of respiratory and allergic health effects in children. Although causal links have not been documented, and other correlated indoor-related exposures may ultimately be implicated, these findings nevertheless point to a new class of little recognized indoor risk factors for allergic and respiratory disease, distinct from the current set of indoor risk factors. The available evidence thus raises initial questions about many common residential practices: for instance, using pressed wood furnishings in children's bedrooms, repainting infant nurseries, and encasing mattresses and pillows with vinyl for asthmatic children. The findings summarized here suggest a need for substantially increased research to replicate these findings, identify causal factors, and validate preventive strategies. 相似文献
19.
The critical flux and chemical cleaning-in-place (CIP) in a long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment were investigated. Steady filtration under high flux (30 L/(m2 h)) was successfully achieved due to effective membrane fouling control by sub-critical flux operation and chemical CIP with sodium hypochlorite (NaClO) in both trans-membrane pressure (TMP) controlling mode (cleaning with high concentration NaClO of 2000-3000 mg/L in terms of effective chorine was performed when TMP rose to 15 kPa) and time controlling mode (cleanings were performed weekly and monthly respectively with low concentration NaClO (500-1000 mg/L) and high concentration NaClO (3000 mg/L)). Microscopic analysis on membrane fibers before and after high concentration NaClO was also conducted. Images of scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that NaClO CIP could effectively remove gel layer, the dominant fouling under sub-critical flux operation. Porosity measurements indicated that NaClO CIP could partially remove pore blockage fouling. The analyses from fourier transform infrared spectrometry (FTIR) with attenuated total reflectance accessory (ATR) and energy dispersive spectrometer (EDS) demonstrated that protein-like macromolecular organics and inorganics were the important components of the fouling layer. The analysis of effluent quality before and after NaClO CIP showed no obvious effect on effluent quality. 相似文献
20.
D. Muir B. Braune B. DeMarch R. Norstrom R. Wagemann L. Lockhart B. Hargrave D. Bright R. Addison J. Payne K. Reimer 《The Science of the total environment》1999,230(1-3)
Recent studies have added substantially to our knowledge of spatial and temporal trends of persistent organic pollutants and heavy metals in the Canadian Arctic marine ecosystem. This paper reviews the current state of knowledge of contaminants in marine biota in the Canadian Arctic and where possible, discusses biological effects. The geographic coverage of information on contaminants such as persistent organochlorines (OCs) (PCBs, DDT- and chlordane-related compounds, hexachlorocyclohexanes, toxaphene) and heavy metals (mercury, selenium, cadmium, lead) in tissues of marine mammal and sea birds is relatively complete. All major beluga, ringed seal and polar bear stocks along with several major sea bird colonies have been sampled and analysed for OC and heavy metal contaminants. Studies on contaminants in walrus are limited to Foxe Basin and northern Québec stocks, while migratory harp seals have only been studied recently at one location. Contaminant measurements in bearded seal, harbour seal, bowhead whale and killer whale tissues from the Canadian Arctic are very limited or non-existent. Many of the temporal trend data for contaminants in Canadian Arctic biota are confounded by changes in analytical methodology, as well as by variability due to age/size, or to dietary and population shifts. Despite this, studies of OCs in ringed seal blubber at Holman Island and in sea birds at Prince Leopold Island in Lancaster Sound show declining concentrations of PCBs and DDT-related compounds from the 1970s to 1980s then a levelling off during the 1980s and early 1990s. For other OCs, such as chlordane, HCH and toxaphene, limited data for the 1980s to early 1990s suggests few significant declines in concentrations in marine mammals or sea birds. Temporal trend studies of heavy metals in ringed seals and beluga found higher mean concentrations of mercury in more recent (1993/1994) samples than in earlier collections (1981–1984 in eastern Arctic, 1972–1973 in western Arctic) for both species. Rates of accumulation of mercury are also higher in present day animals than 10–20 years ago. Cadmium concentrations in the same animals (eastern Arctic only) showed no change over a 10-year period. No temporal trend data are available for metals in sea birds or polar bears. There have been major advances in knowledge of specific biomarkers in Canadian Arctic biota over the past few years. The species with the most significant risk of exposure to PCBs and OC pesticides may be the polar bear which, based on comparison with EROD activity in other marine mammals (beluga, ringed seal), appears to have elevated CYP1A-mediated activity. The MFO enzyme data for polar bear, beluga and seals suggest that even the relatively low levels of contaminants present in Arctic animals may not be without biological effects, especially during years of poor feeding. 相似文献