首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An on-demand mixing droplet spotter for generating and mixing picoliter droplets has been developed for ultrasmall reaction vessels. The droplets were generated by applying a approximately 500-V, approximately 2-ms pulsed voltage to the tips of capillary tubes (o.d. approximately 20 microm; i.d. approximately 12 microm) filled with solution. The mixing process was achieved using electrostatic force. The initial droplet was formed by applying the pulsed voltage between one capillary and the substrate, and the second jet of the other solution was generated from the other capillary and collided with the initial droplet automatically because the electric field lines concentrated on the initial droplet. Using this mixing process, a microarray having a concentration gradient was obtained by spotting approximately 6-pL droplets on a surface with a density of one spot per 75 x 75 microm(2).  相似文献   

2.
Independent control of electroosmosis is important for separation science techniques such as capillary zone electrophoresis and for the movement of fluids on microdevices. A capillary electrophoresis microdevice is demonstrated which provides more efficient control of electroosmosis with an applied external voltage field. The device is fabricated in a glass substrate where a 5.0 cm separation channel (30 microm wide) is paralleled with two embedded electrodes positioned 50 microm away in the substrate. With this structure, greatly reduced applied external potentials (< or = 120 V compared to tens of kilovolts) still effectively altered electroosmosis. The efficiency for the control of electroosmosis by the applied external field is improved by approximately 40 times over published values.  相似文献   

3.
Monolithic silica capillary columns for HPLC were prepared from tetramethoxysilane to have smaller sized domains and increased phase ratios as compared to previous materials, and their performance was evaluated. The monolithic silica columns possessed an external porosity of 0.65-0.76 and a total porosity of 0.92-0.95 and showed considerably higher performance and greater retention factors in a reversed-phase mode after chemical modification than columns previously reported. An octadecylsilylated monolithic silica column with the smallest domain size (through-pores of approximately 1.3 microm and silica skeletons of approximately 0.9 microm) showed a plate height of less than 5 microm at optimum linear velocities (u) of 2-3 mm/s in 80% acetonitrile for a solute having retention factors of approximately 1, and approximately 7 microm at u = 8 mm/s. With a permeability similar to that of a column packed with 5-microm particles, the monolithic silica columns were able to attain column efficiencies comparable to that of particulate columns packed with 2-2.5-microm particles, and showed performance in the "forbidden region" for the previous columns. The performance of the monolithic column can be compared favorably with that of a particle-packed column when 15,000-30,000 or more theoretical plates are desired at a pressure drop of 20-40 MPa or lower. The increased homogeneity of the co-continuous structures, in addition to the small-sized domains, contributed to the higher performance as compared to previous monolithic silica columns.  相似文献   

4.
Long monolithic silica-C18 capillary columns of 100 microm i.d. were prepared, and the efficiency was examined using reversed-phase HPLC under a pressure of up to 47 MPa. At linear velocities of 1-2 mm/s, 100,000-500,000 theoretical plates could be generated with a single column (90-440 cm in length) using an acetonitrile-water (80/20) mobile phase with a column dead time (t0) of 5-40 min. It was possible to prepare columns with a minimum plate height of 8.5 +/- 0.5 microm and permeability of (1.45 +/- 0.09) x 10(-13) m(2). The chromatographic performance of a long octadecylsilylated monolithic silica capillary column was demonstrated by the high-efficiency separations of aromatic hydrocarbons, benzene derivatives, and a protein digest. The efficiency for a peptide was maintained for an injection of up to 0.5-2 ng. When three 100 microm i.d. columns were connected to form a 1130-1240 cm column system, 1,000,000 theoretical plates were generated for aromatic hydrocarbons with retention factors of up to 2.4 with a t0 of 150 min. The fact that very high efficiencies were obtained for the retained solutes suggests the practical utility of these long monolithic silica capillary columns.  相似文献   

5.
Moini M 《Analytical chemistry》2007,79(11):4241-4246
A robust, reproducible, and single-step interface design between low flow rate separation techniques, such as sheathless capillary electrophoresis (CE) and nanoliquid chromatography (nLC), and mass spectrometry (MS) using electrospray ionization (ESI), is introduced. In this design, the electrical connection to the capillary outlet was achieved through a porous tip at the capillary outlet. The porous section was created by removing 1-1.5 in. of the polyimide coating of the capillary and etching this section by 49% solution of HF until it is porous. The electrical connection to the capillary outlet is achieved simply by inserting the capillary outlet containing the porous tip into the existing ESI needle (metal sheath) and filling the needle with the background electrolyte. Redox reactions of water at the ESI needle and transport of these small ions through the porous tip into the capillary provides the electrical connection for the ESI and for the CE outlet electrode. The etching process reduces the wall thickness of the etched section, including the tip of the capillary, to 5-10 microm, which for a 20-30 microm i.d. capillary results in stable electrospray at approximately 1.5 kV. The design is suitable for interfacing a wide range of capillary sizes with a wide range of flow rates to MS via ESI, but it is especially useful for interfacing narrow (<30 microm i.d.) capillaries and low flow rates (<100 nL/min). The advantages of the porous tip design include the following: (1) its fabrication is reproducible, can be automated, and does not require any mechanical tools. (2) The etching process reduces the tip outer diameter and makes the capillary porous in one step. (3) The interface can be used for both nLC-MS and CE-MS. (4) If blocked or damaged, a small section of the tip can be etched off without any loss of performance. (5) The interface design leaves the capillary inner wall intact and, therefore, does not add any dead volume to the CE-MS or nLC-MS interface. (6) Bubble formation due to redox reactions of water at the high-voltage electrode is outside of the separation capillary and does not affect separation or MS performances. The performance of this interface is demonstrated by the analyses of amino acids, peptide, and protein mixtures.  相似文献   

6.
The ability to manipulate and effectively utilize small proteomic samples is important for analyses using liquid chromatography (LC) in combination with mass spectrometry (MS) and becomes more challenging for very low flow rates due to extra column volume effects on separation quality. Here we report on the use of commercial switching valves (150-microm channels) for implementing the on-line coupling of capillary LC columns operated at 10,000 psi with relatively large solid-phase extraction (SPE) columns. With the use of optimized column connections, switching modes, and SPE column dimensions, high-efficiency on-line SPE-capillary and nanoscale LC separations were obtained demonstrating peak capacities of approximately 1000 for capillaries having inner diameters between 15 and 150 microm. The on-line coupled SPE columns increased the sample processing capacity by approximately 400-fold for sample solution volume and approximately 10-fold for sample mass. The proteomic applications of this on-line SPE-capillary LC system were evaluated for analysis of both soluble and membrane protein tryptic digests. Using an ion trap tandem MS it was typically feasible to identify 1100-1500 unique peptides in a 5-h analysis. Peptides extracted from the SPE column and then eluted from the LC column covered a hydrophilicity/hydrophobicity range that included an estimated approximately 98% of all tryptic peptides. The SPE-capillary LC implementation also facilitates automation and enables use of both disposable SPE columns and electrospray emitters, providing a robust basis for automated proteomic analyses.  相似文献   

7.
An ultrahigh-voltage capillary electrophoresis system was built to demonstrate the possibility of extending the applied potential and thus the separation power of capillary electrophoresis. A commercial 30-kV power supply was extensively modified in order to provide electrical potentials up to 120 kV. A unique electrical shielding system was developed to prevent capillary breakdown and corona or spark discharges. Electrophoretic studies using a mixture of peptide standards, as well as a complex mixture of peptides obtained from a protein digest, showed that the numbers of theoretical plates achieved increase linearly with applied voltage. Theoretical plate counts ranging from 2.7 to 6.1 million plates were obtained for peptides in a separation done at 120 kV. Resolution also increased with the square root of applied voltage, as predicted by theory.  相似文献   

8.
Sol-gel chemistry was successfully used for the fabrication of open tubular columns with surface-bonded octadecylsilane (ODS) stationary-phase coating for capillary electrochromatography (OT-CEC). Following column preparations, a series of experiments were performed to investigate the performance of the sol-gel coated ODS columns in OT-CEC. The incorporation of N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride as one of the sol-gel precursors played an important role in the electrochromatographic performance of the prepared columns. This chemical reagent possesses a chromatographically favorable, bonded ODS moiety, in conjunction with three methoxy groups allowing for sol-gel reactivity. In addition, a positively charged nitrogen atom is present in the molecular structure of this reagent and provides a positively charged capillary surface responsible for the reversed electroosmotic flow (EOF) in the columns during CEC operation. Comparative studies involving the EOF within such sol-gel ODS coated and uncoated capillaries were performed using acetonitrile and methanol as the organic modifiers in the mobile phase. The use of a deactivating reagent, phenyldimethylsilane, in the sol-gel solution was evaluated. Efficiency values of over 400,000 theoretical plates per meter were achieved in CEC on a 64 cm x 25 microm i.d. sol-gel ODS open tubular column. Test mixtures of polycyclic aromatic hydrocarbons, benzene derivatives, and aromatic aldehydes and ketones were used to evaluate the CEC performances of both nondeactivated and deactivated open tubular sol-gel columns. The effects of mobile-phase organic modifier contents and pH on EOF in such columns were evaluated. The prepared sol-gel ODS columns are characterized by switchable electroosmotic flow. A pH value of approximately 8.5 was found correspond to the isoelectric point for the prepared sol-gel ODS coatings.  相似文献   

9.
Nanoliter viscometer for analyzing blood plasma and other liquid samples   总被引:1,自引:0,他引:1  
We have developed a microfabricated nanoliter capillary viscometer that quickly, easily, and inexpensively measures the viscosity of liquids. The measurement of viscosity is based on capillary pressure-driven flow inside microfluidic channels (depth approximately 30 microm and width approximately 300 microm). Accurate and precise viscosity measurements can be made in less than 100 s while using only 600 nL of liquid sample. The silicon-glass hybrid device (18 mm by 15 mm) contains on-chip components that measure the driving capillary pressure difference and the relevant geometrical parameters; these components make the nanoliter viscometer completely self-calibrating, robust, and easy to use. Several different microfabricated viscometers were tested using solutions with viscosities ranging from 1 to 5 cP, a range relevant to biological fluids (urine, blood, blood plasma, etc.). Blood plasma samples collected from patients with the symptoms of hyperviscosity syndrome were tested on the nanoliter capillary viscometer to an accuracy of 3%. Such self-calibrating nanoliter viscometers may have widespread applications in chemical, biological, and medical laboratories as well as in personal health care.  相似文献   

10.
We describe the preparation and performance of high-efficiency 70 cm x 20 microm i.d. silica-based monolithic capillary LC columns. The monolithic columns at a mobile-phase pressure of 5000 psi provide flow rates of approximately 40 nL/min at a linear velocity of approximately 0.24 cm/s. The columns provide a separation peak capacity of approximately 420 in conjunction with both on-line coupling with microsolid-phase extraction and nanoelectrospray ionization-mass spectrometry. Performance was evaluated using a Shewanella oneidensis tryptic digest, and approximately 15-amol detection limits for peptides were obtained using a conventional ion trap and MS/MS for peptide identification. The sensitivity and separation efficiency enabled the identification of 2367 different peptides covering 855 distinct S. oneidensis proteins from a 2.5-microg tryptic digest sample in a single 10-h analysis. The number of identified peptides and proteins approximately doubled when the effective separation time was extended from 200 to 600 min. The number of identified peptides increased from 32 to 390 as the injection amount was increased from 0.5 to 100 ng. Both the run-to-run and column-to-column reproducibility for proteomic analyses were also evaluated.  相似文献   

11.
Zhang LH  Wu XZ 《Analytical chemistry》2007,79(6):2562-2569
An in-capillary, solid-phase extraction (SPE)-capillary electrophoresis (CE) method, with not only high preconcentration factor but also no adsorption on the inner capillary wall of absorbing species in real complex samples, has been developed with a hole-opened capillary. The SPE sorbents approximately 3 mm in length was packed in the inlet end of the capillary. A hole approximately 30 microm in diameter was opened after the sorbents on the capillary. Sample solutions were loaded from the inlet end, and the sample wastes flowed out from the hole. After a certain time of the sample loading, a 1.5-mm-long methanol plug was introduced from the inlet end and forced to pass by the sorbents and the hole. Then, a separation voltage was applied between the hole and the outlet end of the capillary to carry out normal CE. When the sample loading time was 120 min, CE peak heights of the 2,4-dichlorophenol and 2,4,5-trichlorophenol were proportional to their concentration in a range of 0.08-5 ng/mL, and their detection limits were 25 and 17 pg/mL, respectively. A 16,000-fold sensitivity enhancement was obtained for CE of the chlorophenols with only a little decrease in CE separation efficiency. It was also demonstrated with the mixture of the chlorophenols and a surfactant cetyltrimethylammonium bromide that the present method could eliminate the adsorption problem of absorbing species on the inner wall during sample loading. Furthermore, the SPE-CE was directly applied to determination of chlorophenols on the level of 0.02 ppb in downstream water of a river, and the results agreed well with those obtained with off-line SPE-HPLC experiments.  相似文献   

12.
Molecularly imprinted polymer coatings were synthesized in fused-silica capillary columns by the use of a surface-coupled radical initiator. The coatings were prepared using either toluene, dichloromethane, or acetonitrile in the prepolymerization mixtures and were 0.15-2 microm thick as determined by scanning electron microscopy. Solvent-dependent differences in appearance were observed. All the molecularly imprinted polymer-based open-tubular capillary columns were able to separate the enantiomers of propranolol by means of electrochromatography. Electrochromatographic performance was found to be dependent on the type of solvent used during the synthesis.  相似文献   

13.
Liu H  Zhang L  Zhu G  Zhang W  Zhang Y 《Analytical chemistry》2004,76(21):6506-6512
The construction and evaluation of an on-column etched fused-silica porous junction for on-line coupling of capillary isoelectric focusing (CIEF) with capillary zone electrophoresis (CZE) are described. Where two separation columns were integrated on a single piece of fused-silica capillary through the etched approximately 4 to 5-mm length porous junction along the capillary. The junction is easily prepared by etching a short section of the capillary wall with HF after removing the polyimide coating. The etched section becomes a porous glass membrane that allows only small ions related to the background electrolyte to pass through when high voltage is applied across the separation capillary. The primary advantages of this novel porous junction interface over previous designs (in which the interface is usually formed by fracturing the capillary followed by connecting the two capillaries with a section of microdialysis hollow fiber membrane) are no dead volume, simplicity, and ruggedness, which is particularly well suited for an on-line coupling capillary electrophoresis-based multiple dimensional separation system. The performance of the 2D CIEF-CZE system constructed by such an etched porous junction was evaluated by the analyses of protein mixtures.  相似文献   

14.
The influence of the separation voltage on end column electrochemical detection (EC) in capillary electrophoresis (CE) has been investigated using an electrochemical detector chip based on an array of microband electrodes. It is shown, both theoretically and experimentally, that the effect of the CE electric field on the detection can be practically eliminated, without using a decoupler, by positioning the reference electrode sufficiently close to the working electrode. In the present study, this was demonstrated by using an experimental setup in which neighboring microband electrodes on a chip, positioned 30 microns from the end of the CE capillary, were used as working and reference electrodes, respectively. The short distance (i.e., 10 microns) between the working and reference electrode ensured that both of the electrodes were very similarly affected by the presence of the CE electric field. With this experimental setup, no significant influence of the CE voltage on the peak potentials for gold oxide reduction could be seen for CE voltages up to +30 kV. The detector noise level was also found to be reduced.  相似文献   

15.
A colloidal graphite-coated emitter is introduced for sheathless capillary electrophoresis/nanoelectrospray ionization time-of-flight mass spectrometry (CE/ESI-TOFMS). The conductive coating can be produced by brushing the capillary tip to construct a fine layer of 2-propanol-based colloidal graphite. The fabrication involves a single step and requires less than 2 min. Full cure properties develop in approximately 2 h at room temperature and then the tip is ready for use. The coated capillary tip is applied as a sheathless electrospray emitter. The emitter has proven to bear stable electrospray and excellent performance for 50 microm i.d. x 360 microm o.d. and 20 microm i.d. x 360 microm o.d. capillaries within the flow rate of 80-500 nL/min; continuous electrospray can last for over 200 h in positive mode. Baseline separation and structure elucidation of two clinically interesting basic drugs, risperidone and 9-hydroxyrisperidone, are achieved by coupling pressure-assisted CE to ESI-TOFMS using the described sheathless electrospray emitter with a bare fused-silica capillary at pH 6.7. It is found that the signal intensity of m/z in sheathless CE/ESI-TOFMS at pH 6.7 is approximately 50 times higher than that at pH 9.0 for the two analytes, although the electroosmotic flow (EOF) at pH 9.0 provides sufficient flow rate (approximately 150 nL/min) to maintain electrospray.  相似文献   

16.
毛细管区带电泳分离甲酚异构体的研究   总被引:1,自引:1,他引:0  
本文系统地研究了邻、间、对甲酚三种异构体在毛细管区带电泳中的迁移行为。通过实验研究讨论了缓冲溶液类型、缓冲溶液的pH值、缓冲溶液的浓度和添加剂等因素对三种异构体分离的影响,获得了优化的分离条件。结果表明,在使用未涂层石英毛细管柱(50μm×50cm,有效长度为45 cm),检测波长225 nm,磷酸盐-环糊精-硼砂缓冲溶液浓度30 mmol/L,缓冲液pH值为11.60,分离电压为15 kV的条件下,甲酚三种异构体得到基线分离。  相似文献   

17.
In this work, electron field emission from AAO-CNT structure is studied as a function of anodizing voltage. It is found that the turn-on electric field of AAO-CNTs reduces from 5 V/microm to 4 V/microm as anodization voltage increase from 20 to 30 V. On the other hand, CNTs the turn-on electric field of AAO-CNTs increases from 4 V/microm to 6 V/microm as anodization voltage increase from 30 to 40 V. Thus, anodization voltage of 30 V provides an optimal AAO-CNTs structure for electron field emission. The emission data have been analyzed based on the Fowler Nordhiem (F-N) model. AAO template prepared with 30 V anodization voltage is found to yield CNT nanoarray with optimum alignment and spacing that increase field enhancement factor by the lowering of field screening effect without significant lowering of CNTs density.  相似文献   

18.
Y. Cheng 《Thin solid films》2006,515(4):1358-1363
An investigation has been carried out to study the effect of pulse negative bias voltage on the morphology, microstructure, mechanical, adhesive and tribological properties of TiN coatings deposited on NiTi substrate by plasma immersion ion implantation and deposition. The surface morphologies were relatively smooth and uniform with lower root mean square values for the samples deposited at 15 kV and 20 kV negative bias voltages. X-ray diffraction results demonstrated that the pulse negative bias voltage can significantly change the microstructure of TiN coatings. The intensity of TiN(220) peak increased with the increase of negative bias voltage in the range of 5-20 kV. When the negative bias voltage increased to 30 kV, the preferred orientation was TiN(200). Nanoindentation test indicates that hardness and elastic modulus increased with the increase of the negative bias voltage (5 kV, 15 kV and 20 kV), and then dropped sharply at 30 kV. The adhesion between the TiN and NiTi alloy and tribological properties of TiN coated NiTi alloy depend strongly on the bias voltage parameter; the sample deposited at 20 kV possesses good adhesion strength and excellent tribological property.  相似文献   

19.
Capillaries with inner diameters of 550 microm have successfully been packed with 1.5-microm octadecyl silica particles using frits made of macroporous polymers by the UV photopolymerization of a solution of glycidyl methacrylate and trimethylolpropane trimethacrylate. This type of frit is found superior to one made of low-melting point poly(styrene-co-divinylbenzene) beads. Bubble formation is not observed to occur within these capillary columns under our experimental conditions. Separations can be achieved with sample injection volumes as high as 1 microL. To demonstrate its semipreparative use, a mixture of 500 nL of taxol (20 mM) and its precursor, baccatin III (30 mM), is separated using such a column with a Tris buffer.  相似文献   

20.
The feasibility of using a new and more versatile polymeric chiral surfactant, i.e., poly(sodium N-undecenoxy carbonyl-L-leucinate (poly-L-SUCL) is investigated for simultaneous enantioseparation and detection of eight structurally similar beta-blockers with tandem UV and MS detection. Three optimization approaches, i.e., direct infusion-MS, capillary zone electrophoresis-MS, and chiral micellar electrokinetic chromatography-mass spectrometry (CMEKC-MS), were investigated to optimize sheath liquid parameters, spray chamber parameters, and CMEKC separation parameters for maximum sensitivity and chiral resolution. Compared to unpolymerized micelle of L-SUCL, the use of micelle polymer (i.e., poly-L-SUCL) provided significantly higher separation efficiency, lower separation current, and higher detection sensitivity for CMEKC-ESI-MS of beta-blockers. It was also observed that, unlike monomeric L-SUCL, polymeric L-SUCL provided enantioseparation of all beta-blockers even at the lowest surfactant concentration (i.e., 5 mM poly-L-SUCL). Under optimum CMEKC and ESI-MS conditions (15 mM poly-L-SUCL, 25 mM each of NH4OAc and TEA (pH 8.0); 80% (v/v) methanol sheath liquid containing 40 mM NH4OAc (pH 8.0); sheath liquid flow rate, 5.0 microL/min; drying gas flow rate, 5 L/min; drying gas temperature, 200 degrees C; nebulizing pressure, 6 psi (0.414 bar); capillary voltage, +2.5 kV; fragmentor voltage, 85 V), baseline enantioseparation of eight beta-blockers was achieved by tandem UV (in approximately 30 min) and MS (in approximately 60 min) detection. Calibration curves for all beta-blockers were linear in the range of 0.01-0.6 mM for both CMEKC-UV and CMEKC-MS methods, but the later method provided better concentration limit of detection with similar RSD for migration time and peak areas. The CMEKC-ESI-MS method appears suitable for use as a routine procedure for high-throughput separation of beta-blockers with high sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号