首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical resistivity and Seebeck (S) measurements were performed on (La1−xSrx)MnO3 (0.02x0.50) and (La1−xSrx)CoO3 (0x0.15) in air up to 1073 K. (La1−xSrx)MnO3 (x0.35) showed a metal-to-semiconductor transition; the transition temperature almost linearly increased from 250 to 390 K with increasing Sr content. The semiconductor phase above the transition temperature showed negative values of S. (La1−xSrx)CoO3 (0x0.10) showed a semiconductor-to-metal transition at 500 K. Dominant carriers were holes for the samples of x0.02 above room temperature. LaCoO3 showed large negative values of S below ca. 400 K, indicative of the electron conduction in the semiconductor phase.  相似文献   

2.
Computations of the actual Mie scattering coefficient (Ka) have been performed by taking into account the acceptance angle (0) of the optical receiving system. Results show that in problems concerning the determination of the aerosol particle parameters through scattering methods, the total scattering coefficient (Kr) computed by taking 0 = 0 has to be substituted by Ka. Tables of Ka have been arranged for the following values of the particle refractive index (m), size parameter (x) and 0: M = 1·33, X = 0·1 (0·1) 200 and m = 1·55, X = 0·1 (0·1) 100, for 0 = 0·1° (0·1°) 1·0°.  相似文献   

3.
Conductance measurements are reported for s-alkylisothiouronium bromide, iodide and picrate salts in the dipolar aprotic solvent DMSO at 25°C. The data were analysed by Fuoss's equation (1975–1980) for 1:1 electrolytes, from which the values of Λ0, the Gurney's cosphere diameter R and KA are obtained. The results are discussed in the light of the recorded values of the constants KR and KS and the free energy term Gs.  相似文献   

4.
A relation was obtained between electro-chemical properties of sodium salts (NaCl, NaBr, and Na2SO4), and the thermodynamic property of permeability in symmetrical cellulose acetate membranes, the distribution coefficient K and the kinetic property, the overall diffusion coefficients D. K and D were obtained by the method we proposed using measured unsteady- and steady-state dialysis data. The K values increase with the increase of water content and are in the range of 10−2 for sodium halides and 10−3 for Na2SO4. D is found to increase with the increase of the solute concentration, and the extrapolated values of D to zero concentration D(0) are obtained as 0.015–0.03 μm2/s and increase with the increase of water content in the membrane. D can be divided into the concentration independent diffusion coefficients in the dense part of the membrane Dd and in the porous Dp, applying a two-part (perfect or dense and imperfect or porous) model of the membrane. Contrary to Dd, Dp increases with the increase of Ww and can be correlated as Dp,c = d exp (γ × Ww). It is shown that the averaged Dd, D increases with the increase of the quantity of the ionic mobility u of the solutes at infinite dilution divided by valence, and that the parameter γ increases with the increase of the ionic mobility u. The value of K increases slightly with the increase of water content and decreases with the increase of the Flory—Huggins parameter χ. The Flory—Huggins parameter χ is calculated from the measured values of distribution coefficients and data obtained from the literature. And it was found that the gradient of linear decrease of χ (λcation) depends on equivalent ionic conductivity of anion of salt, λan.  相似文献   

5.
The residence times of the components of two- and three-component mixtures of fine (195 µm), coarse (1315 µm) and very coarse (5040 µm) sands were measured in a pilot-scale cascading rotary dryer. The effects of mixture composition and air velocity (0-5.4 m s-1) were determined. With no air flowing through the drum, the residence times of the individual components were almost the same as that of the overall mixture. Increasing the gas velocity caused a large decrease in residence time. In contrast, particle size had very little effect. The spread of residence times increased with air velocity, peaking between 2 and 4 m s-1; composition had very little effect on the spread. The residence time of the overall mixture could be calculated using the particle transport model of Matchett and Baker if both the modified drag coefficient Φd and the particle Reynolds number Rep were based on the superficial air velocity and the mass-average particle diameter.  相似文献   

6.
Mass transfer coefficients at cylindrical, H2 evolving electrodes, were measured by determining the reduction rate of K3Fe(CN)6. The variables studied were: gas discharge rate V, diameter of the cylinder D, height and position of the cylinder. The diameters ranged from 0·2–2·5 cm, the cd from 25-380 mA/cm2. For horizontal cylinders, the following correlation was found: log K = a + 2·17 log(V0·11/D0·08). The application of gas evolving cylindrical electrodes in industrial electrolysis is discussed in comparison with rotating electrodes.  相似文献   

7.
In this work, an air-blast atomizing column was used to study the CO2 capture performance with aqueous MEA (mono-ethanol-amine) and NaOH solutions. The effects of gas flow rate, the liquid to gas ratio (L/G), the CO2 concentration on the CO2 removal efficiency (η) and the volumetric overall mass transfer coefficient (KGav) were investigated. The air-blast atomizing column was also compared with the pressure spray tower on the studies of the CO2 capture performance. For the aqueous MEA and NaOH solutions, the experimental results show that the η decreases with increasing gas flow rate and CO2 concentration while it increases with increasing L/G. The effects on KGav are more complicated than those for η. When the CO2 concentration is low (3 vol%), KGav increases with increasing gas flow rate while decreases with increasing L/G. However, when the CO2 concentration is high (9.5 vol%), as the gas flow rate and L/G increases, KGav increases first and then decreases. The aqueous MEA solution achieves higher η and KGav than the aqueous NaOH solution. The air-blast atomizing column shows a good performance on CO2 capture.  相似文献   

8.
The effect of TiO2 on the grain growth of the ZnO–Bi2O3–CoO–MnO ceramic system prepared by chemical coprecipitation, was studied between 1150 and 1300 °C in air. Bi2O3 melts during firing, and then TiO2 dissolves into Bi2O3-rich liquid. TiO2 initially reacts with Bi2O3 to form Bi4Ti3O12. Above ≈1050 °C, Bi4Ti3O12 reacts with ZnO to form Zn2TiO4 spinel phase. The kinetic study of grain growth carried out using the expression GnGon=Ko·t·exp(−Q/RT) gave grain exponent (n) value as 6 and the apparent activation energy (Q) as 226.46 kJ/mol. 1.00 mol% TiO2 addition increased the grain growth exponent value from 6 to 7 and apparent activation energy with 1.00 mol% TiO2 addition was found to be 197.10 kJ/mol. The ZnO grain size gradually increases with increasing TiO2 content. Addition of TiO2 may increase the reactivity of the Bi2O3-rich liquid towards the ZnO grain, thus affecting the ZnO grain growth.  相似文献   

9.
The study on removal of NOx from the flue gas of oil-fired boiler has been carried out using non-thermal plasma cum catalyst hybrid reactor at 150 °C. Propylene (C3H6) was used as a reducing agent. A multistage plasma-catalyst hybrid reactor was newly designed and successfully operated to clean up the flue gas stream having a flow rate of 30 Nm3/h. TiO2 and Pd/ZrO2 wash-coated on cordierite honeycomb were used as catalysts in the present study. Though the plasma-catalyst hybrid reactor with TiO2 showed good activity on the removal of NO yet it removed only 50–60% of NOx because a significant portion of NO oxidized to NO2. On the contrary, the plasma-catalyst hybrid reactor with Pd/ZrO2 removed about 50% of inlet NO with a negligible amount of NO oxidation into NO2. The plasma/dual-catalysts hybrid system (front two units of plasma-Pd/ZrO2 + rear two units of plasma/TiO2) proved to be very promising in NOx removal in the presence of C3H6. DeNOx efficiency of about 74% has been achieved at a space velocity of 3300/h at 150 °C.  相似文献   

10.
Layered -titanate materials, NaxMx/2Ti1−x/2O2 (M=Co, Ni and Fe, x=0.2–0.4), were synthesized by flux reactions, and electrical properties of polycrystalline products were measured at 300–800 °C. After sintering at 1250 °C in Ar, all products show n-type thermoelectric behavior. The values of both d.c. conductivity and Seebeck coefficient of polycrystalline Na0.4Ni0.2Ti0.8O2 were ca. 7×103 S/m and ca. −193 μV/K around 700 °C, respectively. The measured thermal conductivity of layered -titanate materials has lower value than conductive oxide materials. It was ca. 1.5 Wm−1 K−1 at 800 °C. The estimated thermoelectric figure-of-merit, Z, of Na0.4Ni0.2Ti0.8O2 and Na0.4Co0.2Ti0.8O2 was about 1.9×10−4 and 1.2×10−4 K−1 around 700 °C, respectively.  相似文献   

11.
We have synthesized an annealed porous aerogel titania (LUAG2), which demonstrates a very high photocatalytic activity for aldehydes and perchloroethylene (PCE) photocatalytic oxidation (PCO) in gas phase under blacklight and fluorescent light irradiation. LUAG2 has a BET surface area of 237 m2/g and a porosity of 0.31 (volume fraction). X-ray diffraction (XRD) analysis shows LUAG2 is nearly pure anatase. It has improved the destruction of PCE and aldehydes as a group by 10-34% with black light compared to Degussa P-25. The optimum water vapor to butyraldehyde molar ratio is around 1/3. LUAG2 also shows better mineralization to CO2 than Degussa P-25 TiO2 does. Under irradiation of a 4 W fluorescent lamp LUAG2 gives a consistently higher conversion than that of Degussa P-25. The highly active photocatalyst indicates potential applications in indoor and outdoor environmental pollution control. A visible-light-responsive TiO2, NTB 200, is also investigated for comparison purposes.  相似文献   

12.
The mean activity coefficients for NaCl in a ternary electrolyte system were determined by the potentiometric method, at 25°C, using a solvent polymeric (PVC) sodium-selective membrane electrode (Na+ ISE), containing N,N'-dibenzyl-N,N'-diphenyl-1,2-phenylenedioxydiacetamide as ionophore, and combined with an Ag/AgCl electrode. The potentiometric measurements were performed at the same ionic strengths in different series of mixed salt solutions, each characterized by a fixed salt molal ratio r (where r = m1/m2 = 1, 10, 50, 100). The nonideal behavior of the ternary NaCl(m1) + LiCl(m2) + H2O electrolyte system was described based on the Pitzer ion-interaction model for mixed salts over the ionic strength ranging from 0.01 up to about 4 mol/kg. Two- and three-particle Pitzer interaction parameters for a mixed electrolyte system were determined based on potentiometric data, and the critical role of potentiometric selectivity coefficient (K12) of ISE as limiting factor in the potentiometric measurements was analyzed.  相似文献   

13.
A mathematical model was developed to simulate the effects of the matrix phase conductivity on the behavior of flow-through porous anode operating for gas evolution reaction. The anode material was assumed to be stable and has a finite conductivity. The model accounts for the conductivities of the solution and the matrix phases, the electrode kinetics, hydrodynamics and gas bubble formation. The different ratios and values of the matrix conductivity group, Kσ (a measure of the matrix conductivity) and the electrolyte conductivity group, Kκ (a measure of the electrolyte conductivity) were found to have significant effects on the distributions of current, potential and gas void fraction. When Kσ was a finite value the reaction was pushed towards the back of the electrode and when Kκ was finite the reaction was pushed towards the front face. The effects of the bubble group, χ on the potential and current distributions were investigated under different impacts of Kσ and Kκ. When Kσ was limited the gas bubbles formed at the back of the electrode were forced to travel within the whole bed with the electrolyte streams, causing larger accumulation of the bubbles and hence higher polarization within the bed. The gas bubble formation limited the conductivity of the pore electrolyte resulting in potential and current distributions similar to the case of finite electrolyte conductivity.  相似文献   

14.
The paper presents an exact analysis of unsteady convective dispersion of a solute in a Casson fluid (assumed as the non-Newtonian behaviour of blood) flowing in a tube. Using a generalized dispersion model, which is valid for all time after the injection of the solute in the flow, we evaluate the axial dispersion coefficients as functions of time. The variation of the asymptotic dispersion coefficient K2* with y0 (the dimensionless radius of the plug flow region) shows that K2* first increases with y0, reaches a maximum and then decreases. The behaviour of the dimensionless dispersion coefficient K2(T) - Pe-2 with time T is also shown graphically.  相似文献   

15.
This study investigated catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 (Cat) in a rotating packed bed (RPB) for the first time. The results showed that the value of the overall decomposition rate constant of ozone (Kc) and overall volumetric mass transfer coefficient (KLa) are 4.28×10-3 s-1 and 11.60×10-3 s-1 respectively at an initial pH of 6, β of 40, of 60 mg·L-1 and QL of 85 L·h-1 in deionized water, respectively. Meanwhile, the Kc and KLa values of Fenhe water are 0.88×10-3 s-1 and 2.51×10-3 s-1 lower than deionized water, respectively. In addition, the Kc and KLa values in deionized water for the Cat/O3-RPB system are 44.86% and 47.41% higher than that for the Cat/O3-BR (bubbling reactor) system, respectively, indicating that the high gravity technology can facilitate the decomposition and mass transfer of ozone in heterogeneous catalytic ozonation and provide some insights into the industrial wastewater.  相似文献   

16.
The divalent selective electrode together with high precision solid state, digital pH -mv -meter makes broader application of potentiometry in physical and inorganic chemistry a certainty. The above set-up is used to determine the stoichiometric constants, K, for Ca and Mg ions association with formates, acetates, propionates and butyrates at 25°, 35° and 45°C in aqueous media. The K-values were converted to infinite dilution KA values were found to be 8.4 LM−1, 10.4 LM−1, 19.1 LM−1 and 19.3 LM−1 for calcium salts of formate, acetate, propionate and butyrate respectively. Also KA values for Mg salts of formate, acetate, propionate and butyrate were found to be 7.8 LM−1, 9.5 LM−1, 13.1 LM−1 and 13.1 LM−1 respectively. Other thermodynamic parameters such as ΔG°, ΔH° and ΔS° are also obtained from the variation of KA with temperature for each salt. The data are interpreted relative to each other on basis of pKa of the corresponding organic acid. Their temperature behaviour is similar to those salts derived from strong acids such as sulphates, rather than weak acids.  相似文献   

17.
An artificial neural network (ANN) was used to analyze the capillary rise in porous media. Wetting experiments were performed with 15 liquids and 15 different powders. The liquids covered a wide range of surface tension (15.45-71.99 mJ/m2) and viscosity (0.25-21 mPa.s). The powders also provided an acceptable range of particle size (0.012-45 μm) and surface free energy (25.5-62.2 mJ/m2). An artificial neural network was employed to predict the time of capillary rise for a known given height. The network's inputs were density, surface tension, and viscosity for the liquids and particle size, bulk density, packing density, and surface free energy for the powders. Two statistical parameters, the product moment correlation coefficient (r2) and the performance factor (PF/3), were used to correlate the actual experimentally obtained times of capillary rise to: (i) their equivalent values as predicted by a designed and trained artificial neural network; and (ii) their corresponding values as calculated by the Lucas-Washburn equation as well as the equivalent values as calculated by its various other modified versions. It must be noted that for a perfect correlation r2 = 1 and PF/3 = 0. The results showed that only the present ANN approach was able to predict with superior accuracy (i.e., r2 = 0.92, PF/3 = 51) the time of capillary rise. The Lucas-Washburn calculations gave the worst correlations (r2 = 0.15, PF/3 = 1002). Furthermore, some of the modifications of this equation as proposed by different workers did not seem to conspicuously improve the relationships, giving a range of inferior correlations between the calculated and experimentally determined times of capillary rise (i.e., r2 = 0.27 to 0.48, PF/3 = 112 to 285).  相似文献   

18.
Mesoporous anodic oxidized alumina (MAOA) capillary tubes with and without a barrier layer have been synthesized by applying a pulse-sequential voltage. The single gas permeances at an elevated temperature and the thermal and hydrothermal stabilities of MAOA were investigated. A highly oriented radial mesopore channel with pore sizes from 40 to 4 nm was formed in the MAOA tubes. Micropores with sizes from 0.4 to 0.8 nm were formed in the barrier layer. The H2 permeance of MAOA with a barrier layer (barrier type) was approximately 540 times lower than that of MAOA without a barrier layer (block type) at 773 K. The H2/N2 permselectivity of the barrier type in the temperature range from 333 to 673 K was 3.4; those of the barrier type at 773 and 823 K were 4.4 and 11, respectively. On the other hand, the H2/N2 permselectivities of the block type were from 3.1 to 3.6 in the temperature range from 333 to 773 K. The H2 permeance and the H2/N2 permselectivity of the amorphous silica membrane on the block type were 1.1 × 10-7 mol/m2 · s · Pa and 40 at 773 K, respectively. MAOA synthesized by the pulse-sequential voltage method can be applied to the mesoporous support of the gas separation membrane at elevated temperatures.  相似文献   

19.
Waste to energy (WtE) plants are utilised for the production of heat and electricity. However, due to corrosion at super heater surfaces a relatively low 25% of the waste lower heating value can with the present technology be converted to electricity. High contents of Cl, Na, K, Zn, Pb and S in waste cause relatively high super heater corrosion rates. The Cl-content in waste is one of the key-factors for volatilisation of alkali and heavy metals in WtE plants. Little is known about the release of Cl, Na, K, Zn, Pb, and S along grate of waste incineration plants. The 26 t h− 1 WtE plant Vestforbrænding unit 5 in Denmark was used for measurements of temperature, gas-concentration (O2/CO/CO2), and sampling of gas phase Cl, Na, K, Pb, Zn, and S. Unit 5 has 6 ports distributed along the 13 m long grate between 1.5–1.8 m above the grate. Five of these ports were used for measurements. Two aqueous absorption systems containing a solution of NH3 or a solution of H2O2/HNO3 were used to collect the gaseous samples. Tar was found to condense in the sampling system at the ports near the fuel inlet. The experiments showed the majority of Cl, Na, and K to be volatilised during the early stages of combustion. The maximum release of Cl, Na, and K was measured in port 2 as 177 ppmv, 71 ppmv, and 44 ppmv respectively. The maximum average gas temperature of 1140 was measured in port 3 compared to the temperatures at ports 2 and 4 of 816 and 551 respectively. It has been suggested to use flue gas from the area of the grate near port 3 with a high temperature, that contains relatively low amounts of corrosive elements, and lead to a separate high temperature super heater and thus increase the electrical efficiency.  相似文献   

20.
Microwave dielectric properties of 0.85CaWO4–0.15LaNbO4 (CWLN) ceramics were investigated as a function of H3BO3, Li2CO3 content and sintering temperature. With the co-addition of 3.0 wt.% H3BO3–1.0 wt.% Li2CO3, the sintering temperature could be effectively reduced from 1150 °C for pure CWLN ceramics to 900 °C without any degradation of dielectric properties. These results are due to the enhancement of the sinterability of CWLN by liquid phase sintering. For the specimens with H3BO3–Li2CO3 sintered at 900 °C for 3 h, the dielectric constant (K) did not changed remarkably. However, the quality factor (Qf) and the temperature coefficient of resonant frequency (TCF) increased up to y = 1.0 of 3.0 wt.% H3BO3y wt.% Li2CO3, and then decreased due to the formation of the secondary phases. Typically, K of 11.8, Qf of 45,200 GHz and TCF of −23.1 ppm/°C were obtained for the specimens of CWLN with 3.0 wt.% H3BO3–1.0 wt.% Li2CO3 sintered at 900 °C for 3 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号