首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用自蔓延高温合成与等离子喷涂相结合的方法在自制的反应室中沉积了TiN/AlN复相陶瓷。通过XRD、SEM、TEM等手段对复相陶瓷进行了相分析、表面形貌及微观结构分析,结果表明,复相陶瓷主要由TiN和AlN两相组成,但复相陶瓷粒子间的结合较差,没有明显的相界,TEM表明复相陶瓷有类似于羽毛状的形貌。  相似文献   

2.
综述了TiN/Al2O3,AlN/Al2O3以及(TiN,AlN)/Al2O3复合材料的研究现状。并指出颗粒增韧是复相陶瓷材料增韧最简单的方式之一,其中纳米复合、纳微米复合、多相复合是实现颗粒增韧的有效途径。在复相陶瓷的制备中,原位反应烧结是很有希望的技术,可以直接在基体中生成弥散分布的超细第二相颗粒,而使复合材料的性能大幅度提高。  相似文献   

3.
采用无压烧结(2050℃、Ar气氛)制备SiC-AlN复相陶瓷,利用XRD、SEM、EDAX等分析了AlN含量对复相陶瓷的致密程度、物相组成、微观形貌、烧结性能的影响.研究结果表明,随着AlN含量的增加,陶瓷主晶相由等轴状向棒状或片状转变且晶粒尺寸明显细化;断裂方式由单一穿晶断裂向沿晶断裂过渡.AIN含量为10%时,复相陶瓷相对密度高达97%,烧结性能最好,有晶粒拨出和撕裂效应.  相似文献   

4.
利用电弧离子镀技术在1Cr18Ni9Ti基材上低温沉积Ti-Al-N涂层,研究氮气流量及热处理工艺对涂层微观组织结构的影响。结果表明,沉积态涂层中不含三元层状陶瓷Ti_2AlN MAX相,可能含有Ti_3AlN(反钙钛矿结构)、TiN、α-Ti、fcc-Al及Ti_xAl_y金属间化合物等。涂层经退火后在一定条件下可以形成Ti_2AlN。涂层中的N元素含量及退火温度对Ti_2AlN的形成起到重要作用。N元素含量过多不利于Ti_2AlN的形成;提高退火温度可以促进Ti_2AlN的形成。透射电镜(TEM)分析结果表明,退火过程中Ti_2AlN的形成伴随着涂层微观组织结构的转变,从明显的层状结构转变为细小的等轴晶结构。  相似文献   

5.
目的 为探究Ti6Al4V钛合金表面TiN/Ti-Al-Nb基复合涂层的激光熔覆制备新工艺,研究Nb含量对TiN/Ti-Al-Nb基复合涂层微结构及显微硬度的影响规律。方法 以Nb原子数分数分别为10%、15%和25%的Ti+Nb+AlN混合粉末为原材料,采用基于挤压预置粉末法的激光熔覆原位合成技术,制备出TiN/Ti-Al-Nb基复合涂层。通过X射线衍射仪(XRD)物相定性分析,并结合扫描电子显微镜(SEM)和能量分散谱仪(EDS),对TiN/Ti-Al-Nb基复合涂层中的物相进行定性分析,结合二元平衡相图,进一步分析激光原位化学反应机理。借助显微硬度计,研究TiN/Ti-Al-Nb基复合涂层微结构对截面显微硬度分布的影响规律。结果 在高能密度激光束作用下,混合粉末中Ti和AlN发生了充分的激光原位化学反应,生成了TiN陶瓷增强相,TiN陶瓷增强相的含量与Ti粉和AlN粉末的含量正相关。Nb含量的增加显著影响了Ti-Al-Nb基体相的种类,而不改变增强相的种类,随着Nb含量的增加,含Nb基体相的种类增多,发生Ti3Al→Ti3AlNb→Ti2AlNb→Ti39Nb→Nb7Al的转变。随着TiN增强相含量减少,复合涂层截面平均显微硬度从993.2HV0.5降至701.4HV0.5。结论 Nb含量的增加,不会改变TiN/Ti-Al-Nb基复合涂层增强相的种类,但可以降低TiN增强相的含量,从而降低复合涂层截面平均显微硬度。  相似文献   

6.
采用脉冲多弧离子镀技术制备TiN/AlN纳米多层膜,对该薄膜的结构研究表明,随着调制周期的减小,稳定态六方AlN相逐渐转变成亚稳态立方AlN相,形成以TiN/AlN超晶格结构为主的薄膜。并从与标准图谱的对比中可知.TiN/AlN超晶格是AlN在立方TiN簿膜的影响下,在TiN层上以亚稳态相立方结构外延生长所形成。另研究显示,TiN/AlN薄膜具有一定的超硬效应以及在硬质合金刀具上优良的使用性能。  相似文献   

7.
采用透射电镜(TEM)观察和第二相析出相关理论对无取向硅钢中氮化物的析出机理及其对晶粒长大的影响进行了研究.结合理论计算和检测分析表明,无取向硅钢中氮化物主要为AlN和TiN.含铝无取向硅钢中AlN和TiN在连铸过程优先在晶界形核,随着温度的降低将以位错形核为主.在均热过程中,高牌号无取向硅钢中AlN和低牌号无取向电工...  相似文献   

8.
激光原位合成TiN/Ti_3Al基复合涂层   总被引:3,自引:0,他引:3  
利用Ti与AlN之间的高温化学反应,在TC4钛合金表面激光原位合成了TiN/Ti3Al基金属间化合物复合涂层.借助XRD和SEM分析了涂层的物相组成和显微组织.结果表明,涂层主要由TiN和Ti3Al组成.当Ti与AlN摩尔比为4:2时,涂层中TiN含量随激光功率密度的增大而减小;Ti与AIN摩尔比为4:1时,TiN含量随激光功率密度的增大而增大.TiN增强相点阵常数的精确计算显示,涂层中TiN相出现晶格畸变现象,结合EDS分析表明,TiN固溶的Al含量随功率密度的增加而减小.SEM分析表明,TiN增强体的生长形态随着激光功率密度的增大由棒状逐渐向颗粒状转变.当Ti与AlN的摩尔比为4:1,激光功率密度为15.28 kW·s·cm~(-2)时,涂层表面的宏观形貌较好,微观组织无气孔和裂纹,试样截面显微硬度自基体至涂层表面变化平缓,涂层平均显微硬度达到844 HV_(0.2),约为基体合金的3.4倍.  相似文献   

9.
TiN/Si_3N_4纳米复相陶瓷电加工表面质量的正交试验研究   总被引:1,自引:1,他引:0  
通过对TiN/Si3N4纳米复相陶瓷电火花线切割加工电参数的优化试验,找出了影响表面粗糙度值的主要因素和较优组合,为进一步开发TiN/Si3N4纳米复相陶瓷材料的应用提供了依据。  相似文献   

10.
采用放电等离子烧结技术,添加质量分数为3%的CaF2作为烧结助剂,制备了透明氮化铝(AlN)陶瓷.样品在烧结温度1 800℃,30 MPa压力下保温15 min,达到了99.5%的相对密度和52.7%的最大透过率.SEM、XRD、TEM和EDX结果表明,烧结体具有很高的致密度、纯度,良好的晶粒形貌和微观晶体结构,晶界和三角晶界处观察不到第二相的存在.CaF2的添加引入液相烧结,促进AlN晶粒的生长和烧结体的致密化,并且与AlN颗粒反应生成的氟化物和Ca-Al-O化合物能够从烧结体中逸出,进一步净化烧结体,是制备透明AlN陶瓷的有效助剂.放电等离子烧结技术具有烧结快速、烧结体致密度高的特点,是制备透明AlN陶瓷的有效方法.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号