首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a heuristic for a series-parallel system, exhibiting a multi-state behavior, minimizing the cost in order to provide a desired level of reliability. System reliability is defined as the ability to satisfy consumer demands which is presented as a piecewise cumulative load curve. The components are binary and chosen from a list of products available on the market, and are characterized in terms of their feeding capacity, reliability and cost. The solution approach makes use of a homogeneous collection of components to provide redundancy in a subsystem. The algorithm is applied to power systems found in the literature for various levels of reliability requirement. The heuristic offers a straightforward analysis and is efficient both in terms of solution quality and computational time, as compared to existing genetic algorithms and heuristics. Thus, the developed heuristic is attractive, and it can be easily and efficiently applied to numerous real-life systems.  相似文献   

2.
The redundancy allocation problem is formulated with the objective of minimizing design cost, when the system exhibits a multi-state reliability behavior, given system-level performance constraints. When the multi-state nature of the system is considered, traditional solution methodologies are no longer valid. This study considers a multi-state series-parallel system (MSPS) with capacitated binary components that can provide different multi-state system performance levels. The different demand levels, which must be supplied during the system-operating period, result in the multi-state nature of the system. The new solution methodology offers several distinct benefits compared to traditional formulations of the MSPS redundancy allocation problem. For some systems, recognizing that different component versions yield different system performance is critical so that the overall system reliability estimation and associated design models the true system reliability behavior more realistically. The MSPS design problem, solved in this study, has been previously analyzed using genetic algorithms (GAs) and the universal generating function. The specific problem being addressed is one where there are multiple component choices, but once a component selection is made, only the same component type can be used to provide redundancy. This is the first time that the MSPS design problem has been addressed without using GAs. The heuristic offers more efficient and straightforward analyses. Solutions to three different problem types are obtained illustrating the simplicity and ease of application of the heuristic without compromising the intended optimization needs.  相似文献   

3.
The reliability-redundancy optimization problems can involve the selection of components with multiple choices and redundancy levels that produce maximum benefits, and are subject to the cost, weight, and volume constraints. Many classical mathematical methods have failed in handling nonconvexities and nonsmoothness in reliability-redundancy optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solutions. One of these meta-heuristics is the particle swarm optimization (PSO). PSO is a population-based heuristic optimization technique inspired by social behavior of bird flocking and fish schooling. This paper presents an efficient PSO algorithm based on Gaussian distribution and chaotic sequence (PSO-GC) to solve the reliability-redundancy optimization problems. In this context, two examples in reliability-redundancy design problems are evaluated. Simulation results demonstrate that the proposed PSO-GC is a promising optimization technique. PSO-GC performs well for the two examples of mixed-integer programming in reliability-redundancy applications considered in this paper. The solutions obtained by the PSO-GC are better than the previously best-known solutions available in the recent literature.  相似文献   

4.
This paper proposes a genetic algorithm (GA) for a redundancy allocation problem for the series-parallel system when the redundancy strategy can be chosen for individual subsystems. Majority of the solution methods for the general redundancy allocation problems assume that the redundancy strategy for each subsystem is predetermined and fixed. In general, active redundancy has received more attention in the past. However, in practice both active and cold-standby redundancies may be used within a particular system design and the choice of the redundancy strategy becomes an additional decision variable. Thus, the problem is to select the best redundancy strategy, component, and redundancy level for each subsystem in order to maximize the system reliability under system-level constraints. This belongs to the NP-hard class of problems. Due to its complexity, it is so difficult to optimally solve such a problem by using traditional optimization tools. It is demonstrated in this paper that GA is an efficient method for solving this type of problems. Finally, computational results for a typical scenario are presented and the robustness of the proposed algorithm is discussed.  相似文献   

5.
The paper extends the universal generating function technique used for the analysis of multi-state systems to the case when the performance distributions of some elements depend on states of another element or group of elements.  相似文献   

6.
《IIE Transactions》2008,40(2):122-132
The computation of the reliability of weighted voting systems is an important problem in reliability theory due to its potential application in security, target identification, safety and monitoring areas. Voting systems are used in a wide variety of applications where an acceptance or rejection decision has to be made about a binary proposition presented to the system. For these systems, it is of interest to obtain the probability so that based on the vote of decision-making units, the system aggregates these votes into the right decision when presented with such a proposition. This paper presents a holistic work on weighted voting system reliability by presenting modeling, computation, estimation and optimization techniques. The modeling part takes advantage of the structure of weighted voting systems to present a model of its reliability as a multi-state system. Next, based on the multi-state view of the system, an exact computational approach based on multi-state minimal cut and path vectors is introduced. The paper then acknowledges the computational complexity of the problem and provides a Monte Carlo simulation approach that estimates system reliability accurately and in an efficient computational time. Finally, an optimization heuristic that generates quasi-optimal solutions is presented that is able to solve the problem of maximizing the reliability of a weighted voting system based on a specified number of decision-making units with known reliability characteristics.  相似文献   

7.
This paper deals with preventive maintenance optimization problem for multi-state systems (MSS). This problem was initially addressed and solved by Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193–203]. It consists on finding an optimal sequence of maintenance actions which minimizes maintenance cost while providing the desired system reliability level. This paper proposes an approach which improves the results obtained by genetic algorithm (GENITOR) in Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193–203]. The considered MSS have a range of performance levels and their reliability is defined to be the ability to meet a given demand. This reliability is evaluated by using the universal generating function technique. An optimization method based on the extended great deluge algorithm is proposed. This method has the advantage over other methods to be simple and requires less effort for its implementation. The developed algorithm is compared to than in Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193–203] by using a reference example and two newly generated examples. This comparison shows that the extended great deluge gives the best solutions (i.e. those with minimal costs) for 8 instances among 10.  相似文献   

8.
This paper describes a Monte-Carlo (MC) simulation methodology for estimating the reliability of a multi-state network. The problem under consideration involves multi-state two-terminal reliability (M2TR) computation. Previous approaches have relied on enumeration or on the computation of multi-state minimal cut vectors (MMCV) and the application of inclusion/exclusion formulae. This paper discusses issues related to the reliability calculation process based on MMCV. For large systems with even a relatively small number of component states, reliability computation can become prohibitive or inaccurate using current methods. The major focus of this paper is to present and compare a new MC simulation approach that obtains accurate approximations to the actual M2TR. The methodology uses MC to generate system state vectors. Once a vector is obtained, it is compared to the set of MMCV to determine whether the capacity of the vector satisfies the required demand. Examples are used to illustrate and validate the methodology. The estimates of the simulation approach are compared to exact and approximation procedures from solution quality and computational effort perspectives. Results obtained from the simulation approach show that for relatively large networks, the maximum absolute relative error between the simulation and the actual M2TR is less than 0.9%, yet when considering approximation formulae, this error can be as large as 18.97%. Finally, the paper discusses that the MC approach consistently yields accurate results while the accuracy of the bounding methodologies can be dependant on components that have considerable impact on the system design.  相似文献   

9.
This paper evaluates and implements composite importance measures (CIM) for multi-state systems with multi-state components (MSMC). Importance measures are frequently used as a means to evaluate and rank the impact and criticality of individual components within a system yet they are less often used as a guide to prioritize system reliability improvements. For multi-state systems, previously developed measures sometimes are not appropriate and they do not meet all user needs. This study has two inter-related goals: first, to distinguish between two types of importance measures that can be used for evaluating the criticality of components in MSMC with respect to multi-state system reliability, and second, based on the CIM, to develop a component allocation heuristic to maximize system reliability improvements. The heuristic uses Monte-Carlo simulation together with the max-flow min-cut algorithm as a means to compute component CIM. These measures are then transformed into a cost-based composite metric that guides the allocation of redundant elements into the existing system. Experimental results for different system complexities show that these new CIM can effectively estimate the criticality of components with respect to multi-state system reliability. Similarly, these results show that the CIM-based heuristic can be used as a fast and effective technique to guide system reliability improvements.  相似文献   

10.
This paper presents an algorithm for determining an optimal loading of elements in series-parallel systems. The optimal loading is aimed at achieving the greatest possible expected system performance subject to repair resource constraint. The model takes into account the dependence of elements’ failure rates on their load. The optimization algorithm uses a universal generating function technique for evaluating the expected system performance, and a genetic algorithm for determining the optimal load distribution. An illustrative example of load distribution optimization is presented.  相似文献   

11.
This paper deals with multi-state systems (MSS), whose performance can settle on different levels, e.g. 100%, 80%, 50% of the nominal capacity, depending on the operative conditions of the constitutive multi-state elements. Examples are manufacturing, production, power generation and gas and oil transportation systems. Often in practice, MSS are such that operational dependencies exist between the system state and the state of its components. For example, in a production line of nodal series structure, with no buffers between the nodes, if one of the nodes throughput changes (e.g. switches from 100% to 50% due to a deterministic or stochastic transition of one of its components), the other nodes must be reconfigured (i.e. their components must deterministically change their states) so as to provide the same throughput.In this paper, we present a Monte Carlo simulation technique which allows modelling the complex dynamics of multi-state components subject to operational dependencies with the system overall state. A correlation method is tailored to model the automatic change of state of the relevant components following a change in one of the system nodes. The proposed technique is verified on a simple case study of literature.  相似文献   

12.
The railway industry is undertaking significant efforts in the application of reliability-based and risk-informed approaches for rationalizing operation costs and safety requirements. In this respect, importance measures can bring valuable information for identifying the actions to take for most effective system improvement.In this paper, the railway network is modelled within a multi-state perspective in which each rail section is treated as a component, which can stay in different discrete states representing the speed values at which the section can be travelled, depending on the tracks degradation and on the traffic conditions. The Monte Carlo method is used to simulate the complex stochastic dynamics of such multi-state system.A prioritization of the rail sections based on importance measures is then used to most effectively improve the performance of the rail network, in terms of a decrease in the overall trains delay. High-importance sections, i.e. with highest impact on the overall delay, are considered for a relaxation of their speed restrictions and the proposed changes are then verified, from the risk-informed perspective, to have negligible impact on the risk associated to the rail infrastructure.  相似文献   

13.
This paper presents a meta-heuristic algorithm, variable neighborhood search (VNS), to the redundancy allocation problem (RAP). The RAP, an NP-hard problem, has attracted the attention of much prior research, generally in a restricted form where each subsystem must consist of identical components. The newer meta-heuristic methods overcome this limitation and offer a practical way to solve large instances of the relaxed RAP where different components can be used in parallel. Authors’ previously published work has shown promise for the variable neighborhood descent (VND) method, the simplest version among VNS variations, on RAP. The variable neighborhood search method itself has not been used in reliability design, yet it is a method that fits those combinatorial problems with potential neighborhood structures, as in the case of the RAP. Therefore, authors further extended their work to develop a VNS algorithm for the RAP and tested a set of well-known benchmark problems from the literature. Results on 33 test instances ranging from less to severely constrained conditions show that the variable neighborhood search method improves the performance of VND and provides a competitive solution quality at economically computational expense in comparison with the best-known heuristics including ant colony optimization, genetic algorithm, and tabu search.  相似文献   

14.
The paper suggests an effective approach for the estimation of reliability confidence bounds based on component reliability and uncertainty data for multi-state systems with binary-capacitated components. The approach presented is based on the implementation of the universal generating function technique. When compared with a pure Monte Carlo simulation approach, the universal generating function (UGF)-based approach is proven to be more effective due to a more precise reliability estimation and a considerably lower computational effort. Examples are given throughout the paper to illustrate the suggested approach.  相似文献   

15.
This paper proposes a multi-objective optimization model for redundancy allocation for multi-state series–parallel systems. This model seeks to maximize system performance utility while minimizing system cost and system weight simultaneously. We use physical programming as an effective approach to optimize the system structure within this multi-objective optimization framework. The physical programming approach offers a flexible and effective way to address the conflicting nature of these different objectives. Genetic algorithm (GA) is used to solve the proposed physical programming-based optimization model due to the following three reasons: (1) the design variables, the number of components of each subsystems, are integer variables; (2) the objective functions in the physical programming-based optimization model do not have nice mathematical properties, and thus traditional optimization approaches are not suitable in this case; (3) GA has good global optimization performance. An example is used to illustrate the flexibility and effectiveness of the proposed physical programming approach over the single-objective method and the fuzzy optimization method.  相似文献   

16.
The paper suggests a modification of the generalized reliability block diagram (RBD) method for evaluating reliability and performance indices of multi-state systems with uncovered failures. Such systems (or their subsystems) can fail to perform their task in the case of undetected failure of any one of their elements. Examples of this effect can be found in computing systems, electrical power distribution networks, pipe lines carrying dangerous materials etc. The suggested method based on a universal generating function technique allows performance distribution of complex multi-state series-parallel system with uncovered failures to be obtained using a straightforward recursive procedure. Illustrative examples are presented.  相似文献   

17.
In this article, a multi-state system with time redundancy where each system element has its own operation time is considered. In addition, the system total task must be performed during the restricted time. The reliability optimization problem is treated as finding the minimal cost system structure subject to the reliability constraint. A method for reliability optimization for systems with time redundancy is proposed. This method is based on the universal generating function technique for the reliability index computation and on genetic algorithm for the optimization. It provides a solution for the optimization problem for the complex series–parallel system and for the system with bridge topology. Two types of systems will illustrate the approach: systems with ordinary hot reserve and systems with work sharing between elements connected in parallel. Numerical examples are also given.  相似文献   

18.
In this paper we consider vulnerable systems, which can have different states corresponding to different combinations of available elements composing the system. Each state can be characterized by a system performance rate, which is the quantitative measure of a system’s ability to perform its task. Both the impact of external factors (attack) and internal causes (failures) affect system survivability, which is determined as probability of meeting a given demand.One of the ways to enhance system survivability is to separate elements with the same functionality (parallel elements). Since system elements can have different performance rates and different availability, the way in which they are separated strongly affects system survivability. In this paper we formulate the problem of how to separate the elements of series-parallel system in order to achieve a maximal possible level of system survivability by the limited cost.An algorithm based on the universal moment generating function method is suggested for determination of the vulnerable series-parallel multi-state system survivability. A genetic algorithm is used as optimization tool in order to solve the structure optimization problem.  相似文献   

19.
This paper combines universal moment generating function technique with stochastic Petri nets to solve the redundancy optimization problem for multi-state systems under repair policies. Redundant elements are included in order to achieve a desirable level of production availability. The elements of the system are characterized by their cost, performance and availability. These elements are chosen from a list of products available on the market. The number of repair teams is less than the number of reparable elements, and a repair policy specifies the maintenance priorities between the system elements. A heuristic is proposed to determine the minimal cost system configuration under availability constraints. This heuristic, first applies universal moment generating function technique to evaluate the system availability, assuming unlimited maintenance resources. Once a preliminary solution is found by the optimization algorithm, stochastic Petri nets are used to model different repair policies, and to find the best system configuration (architecture and number of repairmen) in terms of global performance (availability and cost). This combined procedure is applied to a reference example.  相似文献   

20.
When systems with two failure modes (STFM) are considered, introducing redundant elements may either increase or decrease system reliability. Therefore the problem of system structure optimization arises. In this paper we consider systems consisting of elements characterized by different reliability and nominal performance rates. Such systems are multi-state because they can have different levels of output performance depending on the combination of elements available at the moment. The algorithm that determines the structure of multi-state STFM, which maximizes system reliability and/or expected performance is presented. In this algorithm, system elements are chosen from a list of available equipment. Reliability is defined as the probability of satisfaction of given constraints imposed on system performance in both modes.The procedure developed to solve this problem is based on the use of a universal moment generating function (UMGF) for the fast evaluation of multi-state system reliability and a genetic algorithm for optimization. Basic UMGF technique operators are developed for two different types of systems, based, respectively, on transmitting capacity and on processing time. Examples of the optimization of series–parallel structures of both types are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号