首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Auto rate adaptation mechanisms have been proposed to improve the throughput in wireless local area networks with IEEE 802.11a/b/g standards that can support multiple data rate at the physical layer. However, even with the capability of transmitting multi-packets with multi-rate IEEE 802.11 PHY, a mobile host near the fringe of the Access-Point's (AP's) transmission range still needs to adopt a low-level modulation to cope with the lower signal-to-noise ratio (SNR), Thus, it can not obtain a data rate as high as that of a host near AP in most cases. According to the characteristics of modulation schemes, the highest data rate between a pair of mobile hosts will be inversely proportional with the transmission distance. Considering these factors, we here demonstrate a Relay-Based Adaptive Auto Rate (RAAR) protocol that can find a suitable relay node for data transmission between transmitter and receiver, and can dynamically adjust its modulation scheme to achieve the maximal throughput of a node according to the transmission distance and the channel condition. The basic concept is that the best modulation schemes are adaptively used by a wireless station to transmit an uplink data frame, according to the path loss condition between the station itself and a relay node, and that between the relay node and AP, thus delivering data at a higher overall data rate. Evaluation results show that this scheme provides significant throughput improvement for nodes located at the fringe of the AP's transmission range, thus remarkably improving overall system performance. Jain-Shing Liu was born in Taipei, Taiwan, in 1970. He received the Ph.D. degree in Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan. He is currently with the faculty of the Department of Computer Science and Information Management, Providence University, Taichung, Taiwan 433, ROC. His research interests include wireless communication protocol design, performance analysis and modeling, personal communication networks, and distributed simulation. Dr. Liu is a member of IEEE and IEICE. Chunhung Richard Lin was born in Kaohsiung, Taiwan. He received the B.S. and M.S. degrees from the Department of Computer Science and Information Engineering, National Taiwan University, in 1987 and 1989, respectively, and the Ph.D. degree from Computer Science Department, University of California, Los Angeles (UCLA), in 1996. Dr. Lin joined National Chung Cheng University in Taiwan in 1996. Since August 2000, he has been with the Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan. His research interests include the design and control of personal communication networks, protocol design and implementation for differentiated/integrated services in mobile wireless networks, mobile Internet, distributed simulation, and embedded operating system design and implementation. His email address is: lin@cse.nsysu.edu.tw. Dr. Lin is an ACM member. He received the 2001 Junior Professor Research Award from National Sun Yat-Sen University and the 2000 Investigative Research Award from the Pan Wen Yuan Foundation, Taiwan, ROC.  相似文献   

2.
A Self-Adaptive Low Power MAC protocol with carrier sensing for ad-hoc Wireless LANs (WLANs), which is capable of operating efficiently under bursty traffic is proposed in this letter. The protocol utilizes a Learning Automaton structure at each station of the WLAN. Each such structure uses the network feedback to select the mobile station that will transmit. A low-power mode is implemented in order to significantly reduce the energy consumption of the protocol. Simulation results reveal that the low power mode of the proposed protocol reduces the average energy consumption at the mobile stations by as much as 70%.  相似文献   

3.
Cooperative communications are widely used to increase the throughput of wireless networks. It is important to select the appropriate relay nodes to enhance the performance of cooperative communications. In wireless ad hoc networks, such as IEEE802.11 WLAN, the distributed MAC is used to share the wireless channel to different nodes. In this work, a simple store-and-forward cooperative MAC (SFC-MAC) is proposed, which is fully compatible with IEEE 802.11 MAC. In SSF-MAC, the relay node just stores the packets received from the sender and forward them to the receiver after it successfully contend the channel. Furthermore, an model is built to analyze the performance of relay methods in the ideal channel and imperfect channel. We utilize throughput performance as a metric to determine whether a relay node is selected. The analysis and simulation results show that the proposed simple SSF-MAC can increase the system throughput.  相似文献   

4.
Wireless USB (WUSB) is the USB technology merged with WiMedia PHY/MAC based on success of wired USB, and it can be applied to various mobile applications such as laptop, cellular phone, etc. Also, WUSB can provide the better user convenience than wired USB applications as well as be applied to the legacy USB application, since it provides high speed connection between host and devices for the compatibility with USB 2.0 specification and removes the cable among devices using the USB protocol. However the current WUSB protocol can’t prevent the QoS degradation occurred by mobile nodes with low data rate. This problem causes the critical problems in QoS provisioning to isochronous streams and mobile applications. Therefore, we propose a new cooperative MAC protocol for WUSB network with virtual MIMO (multi input multi output) link. Based on instantaneous channel state information among WUSB devices, our proposed protocol can intelligently select the transmission path with higher data rate between WUSB host and WUSB device as well as between WUSB device and WUSB device. Thus our proposed protocol can provide advanced QoS with minimum delay for real-time multimedia services.  相似文献   

5.
Distributed Queuing Collision Avoidance (DQCA) is an efficient MAC protocol designed for infrastructure Wireless LANs. In this paper, four algorithms are proposed that alter the FIFO scheduling order of DQCA in order to meet specific network requirements. The proposed schemes combine the efficiency of opportunistic scheduling with the QoS provisioning through service differentiation. The opportunistic policy encourages transmissions at higher rates when the channel condition is good and is implemented through a cross-layer dialogue between the PHY and the MAC layers. The key idea of service differentiation is to assign priorities to traffic flows with different requirements in order to provide QoS guarantees. The throughput, delay and jitter performance of the proposed schemes has been evaluated through simulations for a scenario with heterogeneous traffic of voice, video, best-effort and background data traffic flows.  相似文献   

6.
Orthogonal frequency division multiplexing (OFDM) is an important technique to support high speed transmission of broadband traffic in wireless networks, especially broadband wireless local area networks (LANs). Based on OFDM, a new multiple access scheme, called OFDM-TDMA with subcarrier allocation (OFDM-TDMA/SA), is proposed in this paper. It provides more flexibility in resource allocation than other multiple access schemes such as OFDM-TDMA, OFDM-frequency division multiple access (OFDM-FDMA), and orthogonal frequency division multiple access (OFDMA). With OFDM-TDMA/SA, a medium access control (MAC) is designed for broadband wireless LANs. It optimizes bit allocation in subcarriers so that maximum bits are transmitted in each OFDM symbol under a frequency selective fading environment. The OFDM-TDMA/SA MAC protocol also supports three classes of traffic such as guaranteed, controlled-load, and best effort services. Based on the optimum subcarrier bit-allocation algorithm and considering heterogeneous QoS constraints of multimedia traffic, a hierarchical scheduling scheme is proposed to determine the subcarriers and time slots in which a mobile terminal can transmit packets. In such a way, the OFDM-TDMA/SA MAC protocol significantly increases system throughput in a frequency selective fading environment and guarantees QoS of multimedia traffic. Computer simulation is carried out to evaluate the performance of the OFDM-TDMA/SA MAC protocol. Results show that the new MAC protocol outperforms other MAC protocols for OFDM-based wireless LANs. This work was supported by the State of Georgia Yamacraw Project (E21-105).  相似文献   

7.
Cooperative communications has been actively studied as an effective approach to achieve multi-user/spatial diversity gains and better overall system performance by coordinating multiple users in a dynamic wireless network to share their resources and capabilities. Based on the concept of cooperative communications, this paper proposes and analyzes a Busy Tone based cooperative Medium Access Control (MAC) protocol, namely BTAC, for multi-rate Wireless Local Area Networks (WLANs). A cross-layer Markov chain model is then developed to evaluate the performance of BTAC under dynamic wireless channel conditions. Analytical and simulation results show our BTAC protocol is simple, robust, fully compatible with the IEEE 802.11b standard and can achieve better throughput and delay performance than the standard Distributed Coordination Function (DCF) protocol and the recently-proposed CoopMAC protocol.  相似文献   

8.
In wireless networks, it is well known that the interference of hidden nodes can interrupt frame receptions. Although several solutions have been proposed to alleviate the problem of DATA corruptions at receivers, control frame corruptions at transmitters have not been considered yet. In this paper, we propose an enhanced MAC protocol, called Robust and Cooperative Medium Access Control (RCMAC), to improve the network throughput and fairness by reducing control frame losses at transmitters. RCMAC uses a relay mechanism to allow transmitters of long distance links to receive control frames more robustly by relaying control frames via relay nodes. Furthermore, RCMAC improves the network throughput through fast two-hop DATA transmissions via relay nodes. Our extensive simulation results show that RCMAC has better performance than existing well-known MAC protocols.  相似文献   

9.
Wireless LANs     
《III》1993,6(3):68
  相似文献   

10.
The IEEE 802.11 standard defines two coordination functions: distributed coordination function (DCF) and point coordination function (PCF). These coordination functions coordinate the shared wireless medium. The PCF uses a centralized polling-based channel access method to support time-bounded services. To design an efficient polling scheme, the point coordinator (PC) needs to obtain information about the current transmission status and channel condition for each station. To reduce overhead caused by polling frames, it is better to poll all stations using one polling frame containing the transmission schedule. In this paper, we propose an efficient polling scheme, referred to as two-step multipolling (TS-MP), for the PCF in wireless local area networks (WLANs). In this new scheme, we propose to use two multipolling frames with different purposes. The first frame is broadcast to collect information such as the numbers of pending frames and the physical-layer transmission rates for the communication links among all stations. The second frame contains a polling sequence for data transmissions designed based on the collected information. This frame is broadcast to all stations. Extensive simulation studies show that TS-MP not only overcomes the aforementioned deficiencies, but also help to implement rate adaptation over time-varying wireless channel.  相似文献   

11.
An efficient polling MAC for wireless LANs   总被引:1,自引:0,他引:1  
Polling schemes are an important class of medium access control (MAC) protocols for wireless local area networks (WLANs). A major drawback of these schemes is their inefficiency when only a small number of mobile stations have packets to transmit. This inefficiency is due to the polling of mobile stations with no packets to transmit, which delays the transmissions of mobile stations with packets. In this paper, we suggest a new polling MAC which exploits the capture phenomena and enables simultaneous polling and transmissions of information packets. Mathematical analysis and simulation results show that the new MAC overcomes the above inefficiency considerably, and thus it is more efficient in the sense that it enables higher throughput and a lower access delay. For example, we show scenarios in which the average access delay is reduced by about 30% and the throughput increases by 66%-75%  相似文献   

12.
 本文提出了一种新的多级门限服务轮询系统MAC控制协议的分析模型.采用嵌入马尔可夫链理论,对离散时间的多级门限服务轮询系统进行了分析,获得了轮询时刻系统队长的概率母函数,精确解析了系统的平均排队队长、平均循环周期、信息分组的平均等待时延.通过对多级门限服务轮询系统的控制机理研究,分析获得了m控制参数的有效控制取值大小和系统的相关特性.多级门限服务轮询系统综合了基本门限服务轮询系统和完全服务轮询系统,在轮询系统的MAC控制协议的应用方面更为有效.  相似文献   

13.
One of the challenging issues in wireless LANs (WLANs) is improving the network throughput. One of the possible solutions for the issue is maximizing the number of concurrent transmissions. Although some protocols have been proposed to exploit transmission concurrency in WLANs, their performance depends on the degree of the interference among links. Also, it is hard to obtain interference information because of their dynamics. In this paper, we propose an enhanced medium access control (MAC) protocol for WLANs, named multichannel relay MAC (MRMAC), which is able to transmit multiple frames simultaneously without considering interference. To enable concurrent transmissions, MRMAC adopts the concept of frame relaying. Furthermore, MRMAC utilizes several nonoverlapping channels to eliminate interferences. Through extensive simulations, we found that MRMAC shows better performance than existing well‐known MAC protocols. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Providing QoS guarantee with appropriate service differentiation in IEEE 802.11 wireless LANs is quite desirable. However, users may be selfish and thus rigorously try to maximize their performance by demanding high services even though the network has already saturated. On the other hand, user misbehaviors such as misuse of priority and over-rate transmission pose further harm to performance of existing flows. These application layer non-cooperation makes successful resource allocation very challenging with existing contention based CSMA/CA channel access. In this paper, we propose a MAC layer coordinated QoS framework of admission control and priority re-allocation for quality of services of real-time applications in wireless LANs. Our focus is on priority based MAC schedulers where each user can set its flow priority in order to receive appropriate level of services. With channel condition information such as available bandwidth and mean delay exchanged among neighboring stations, users can enforce admission control based on the perceived channel status and may re-allocate their priorities to accommodate existing flows as desired. User misbehaviors are identified by estimating the flow transmitting rate and matching priority setting, or even punished by assigning appropriate low priorities. Extensive simulations results show that the proposed framework can effectively coordinate wireless users on keeping reserved transmission rate, using appropriate MAC priority, and allocating sufficient resource. Ming Li received his B.S. and M.S. in Engineering from Shanghai Jiao Tong University, China, in 1995 and 1998, respectively. He is currently a Ph.D. candidate in department of Computer Science, University of Texas at Dallas, where he received M.S. degree in Computer Science in Dec. 2001. His research interest includes QoS schemes for mobile ad-hoc networks and multimedia over wireless networks. B. Prabhakaran is with the faculty of Computer Science Department, University of Texas at Dallas. He has been working in the area of multimedia systems: animation & multimedia databases, authoring & presentation, resource management, and scalable web-based multimedia presentation servers. Dr. Prabhakaran received the prestigious National Science Foundation (NSF) CAREER Award in 2003 for his proposal on Animation Databases. He has published several research papers in various refereed conferences and journals in this area. He has served as guest-editor (special issue on Multimedia Authoring and Presentation) for ACM Multimedia Systems journal. He is also serving on the editorial board of Multimedia Tools and Applications journal, Kluwer Academic Publishers. He has also served as program committee member on several multimedia conferences and workshops. B. Prabhakaran has served as a visiting research faculty with the Department of Computer Science, University of Maryland, College Park. He also served as a faculty in the Department of Computer Science, National University of Singapore as well as in the Indian Institute of Technology, Madras, India.  相似文献   

15.
The main focus of the research presented in thispaper is to evaluate how efficiently a commoncommunication medium such as broadcast radio can beshared by a large number of network devices in anin-building environment. The goal is to recommend anoptimal method to fulfil the demanding requirementsdictated by broadband multimedia applications operatingin wireless local area networks. To this end, apractical and efficient multiaccess scheme calledreserved polling is proposed and analyzed.It is shown that the new method is able to handle anintegrated mix of multimedia traffic and operaterobustly in an unreliable wireless transport medium. Ananalytical approach based on queueing theory is employedto gain some insight into the complex behavior of theprotocol. This approach appears to be accurate in predicting its performance for both bursty andperiodic traffic types. The analytical results areverified by network simulation.  相似文献   

16.
In this paper, we present a novel contention-based medium access control (MAC) protocol, namely, the Channel Reservation MAC (CR-MAC) protocol. The CR-MAC protocol takes advantage of the overhearing feature of the shared wireless channel to exchange channel reservation information with little extra overhead. Each node can reserve the channel for the next packet waiting in the transmission queue during the current transmission. We theoretically prove that the CR-MAC protocol achieves much higher throughput than the IEEE 802.11 RTS/CTS mode under saturated traffic. The protocol also reduces packet collision, thereby saving the energy for retransmission. We evaluate the protocol by simulations under both saturated traffic and unsaturated traffic. Our simulation results not only validate the theoretical analysis on saturated throughput, but also reveal other good features of the protocol. For example, under saturated traffic, both the saturated throughput and fairness measures of the CR-MAC are very close to the theoretical upper bounds. Moreover, under unsaturated traffic, the protocol also achieves higher throughput and better fairness than IEEE 802.11 RTS/CTS.  相似文献   

17.
1 引言 无线局域网(WLAN)本身并不是新概念、新技术,它已存在10多年了。顾名思义,WLAN是用无线通信技术构建的局域网,虽不采用缆线,但也能提供传统有线局域网的所有功能。与有线局域网相比,WLAN具有一定移动性、灵活性高、建网迅速、管理方便、网络造价低、扩展能力强,但WLAN的网络产品较贵、硬件初始投资比有线局域网高、传输速率较低。WLAN还有一个好处是它使用不需许可证的2.4GHz频段,其运营者不用花钱申请频谱许可证,随时可以建网使用。  相似文献   

18.
Presents an assessment of several existing medium access control (MAC) protocols in terms of four criteria: cyclicity/cycle gap, access mode, delay invulnerability, and prioritized access. From these protocols, we selected the adaptive cycle cell insertion (ACCI) mechanism as showing the most promise of satisfying these criteria and modeled our proposed prioritized ACCI (PACCI) protocol on its more desirable features. PACCI is suitable for client-server-based gigabit LANs and MANs. It provides fair access for regular nodes by means of regular cycles, and offers prioritized access to privileged nodes by means of restricted cycles. PACCI's bandwidth allocation for the regular and restricted cycles is then based on an analytic model in an attempt to guarantee QoS by maintaining throughput under diverse traffic loads. Our analysis considered throughput as a function of the restricted cycle/regular cycle ratio (RS/RG) and showed that as RS/RG grows, the throughput difference between privileged and regular nodes increases. Simulation results confirmed the accuracy of the analysis. We also found that the throughput and end-to-end delay are not dependent on the cycle ratio under light load conditions, but that as the network load increases, the benefit of having restricted cycles becomes evident. Simulation results also showed that PACCI assures minimal delay for privileged nodes while incurring reasonable performance degradation for regular nodes  相似文献   

19.
20.
QoS Routing for Mesh-Based Wireless LANs   总被引:1,自引:0,他引:1  
Wireless LANs with their increased data rate become an attractive technology for connecting mobile users to the Internet. Efficient deployment of wireless LANs will require the ability to extend the wireless LANs coverage without the need to deploy a very large number of access points. Mesh-based wireless LANs are an attractive solution to this problem. These networks extend wireless LAN coverage by using each node in the network as a router, resulting in a multihop topology. In this paper we introduce a novel routing algorithm, wireless mesh routing (WMR), that provides quality-of-service (QoS) support and accounts for the characteristics of both infrastructure-based wireless LANs and ad hoc networks. The algorithm is validated using the OPNET modeler. The simulation results show that the mesh network using WMR protocol can provide QoS support and react dynamically to the network status changes with low control overheads. Using the proposed software architecture the proposed routing protocol can be implemented with any MAC protocol, resulting in easy implementation in existing wireless nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号